HNU-算法设计与分析-作业6-0-1背包问题【动规】(2021级)

        给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

        0-1背包问题是一个特殊的整数规划问题。

max\sum_{i=1}^{n}v_{i}*x_{i}

\left\{\begin{matrix} \sum _{i=1}^{n}w_{i}*x_{i} \leq C\\ x_{i}\in \left \{ 0,1 \right \},1\leq i \leq n \end{matrix}\right.

1.最优子结构

        证明:X'(x_{1},x_{2},\cdots x_{n-1})是下式的最优解:

max\sum_{i=1}^{n-1}v_{i}*x_{i}

\left\{\begin{matrix} \sum _{i=1}^{n-1}w_{i}*x_{i} \leq C-w_{n}*x_{n}\\ x_{i}\in \left \{ 0,1 \right \},1\leq i \leq n \end{matrix}\right.

解:

        设X'(x_{1},x_{2},\cdots x_{n-1})不是最优解,则存在一个更优解X''(x_{1},x_{2},\cdots x_{n-1}),满足:

\left\{\begin{matrix} \sum _{i=1}^{ k-1}w_{i}*x''_{i} \leq C-w_{n}*x_{n}\\ \sum _{i=1}^{k-1}w_{i}*x''_{i} > \sum _{i=1}^{n-1}w_{i}*x'_{i} \end{matrix}\right.

所以

\sum _{i=1}^{k-1}w_{i}*x''_{i}+v_{n}x_{n} > \sum _{i=1}^{n}w_{i}*x_{i}

        与X(x_{1},x_{2},\cdots x_{n})是下最优解矛盾

2.递推方程

        m[i[[j]:表示背包容量为j,在前i种物品中选择。

m[i][j]=\left\{\begin{matrix} m[i-1][j],0<=j<w_{i}]\\ max \left \{m[i-1][j],m[i-1][j-w_{i}]+v_{i} \right\},j>=w_{i} \end{matrix}\right.

3.最优值

#include <bits/stdc++.h>
using namespace std;
/*
函数功能:求0-1背包问题的最大价值
函数形参:物品数量和背包容量
函数返回值:返回最大值 
*/   
int fun(int n,int m,vector<int> w,vector<int> v,vector<vector<int> >& f)
{
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			if(j<w[i])
				f[i][j]=f[i-1][j];
			else{
				f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i]);
//				cout<<"i="<<i<<"\tj="<<j<<endl;
//				cout<<"f[i-1][j]="<<f[i-1][j]<<"\tf[i-1][j-w[i]]+v[i]="<<f[i-1][j-w[i]]+v[i]<<"\tf[i][j]="<<f[i][j]<<endl<<endl;
			}				
		}
	}
		return f[n][m];
}

void traceback(int n,int c,vector<int> w,vector<vector<int> >& f,vector<int> &x)  
{  
    for(int i=n;i>1;i--)  
    {  
        if(f[i][c]==f[i-1][c])  
            x[i]=0;  
        else  
        {  
            x[i]=1;  
            c-=w[i];  
        }  
    }  
    x[1]=(f[1][c]>0)?1:0;  
}  
int main()
{
	int n=5, m=10;
	vector<int> w{0,2,2,6,5,4},v{0,6,3,5,4,6};
	vector<vector<int> > f(6, vector<int>(11));
	cout<<fun(n,m, w,v,f)<<endl<<endl;
	for(int i=1;i<=5;i++){
		for(int j=1;j<=10;j++){
			cout<<f[i][j]<<"\t";
		}
		cout<<endl;
	}
	cout<<endl; 
	cout<<"物品选择情况:"<<endl;
	vector<int> x(n+1);
	traceback(n,m,w,f,x);  	
    for(int i=1;i<=n;i++)  
        cout<<x[i]<<"\t";  
	return 0;
}

m[i][j]

n=5;c=10; w={2,2,6,5,4},v={6,3,5,4,6}

012345678910
000000000000
100666666666
200669999999
300669999111114
4006699910111314
50066991212151515

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值