Reversible Data Hiding(Ni ZC. 2006)——基于直方图平移的可逆数据隐藏算法论文简述和算法复现(Matlab)

本文对基于明文域的可逆数据隐藏领域经典论文进行导读,并使用Matlab复现单峰值嵌入方法。介绍了算法的嵌入、提取及恢复过程,以及相关处理。还提及准备工作,包括评价指标PSNR和目录结构。最后给出代码改进思路,强调开源精神并愿免费共享标准测试图片。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 总述

        本文基于Ni等提出的基于直方图平移(histogram shifting, HS)于2003年发表的的基于明文域的可逆数据隐藏(Reversibel Data Hiding,RDH)领域经典论文——Reversible Data Hiding,对论文进行了比较简略的导读,同时使用Matlab对其中单峰值嵌入的方法进行了复现。

        论文原文见:Reversible data hiding | IEEE Journals & Magazine | IEEE Xplore

        其他参考文献:

Reversible image hiding scheme using predictive coding and histogram shifting

​​​​​​图像空域可逆信息隐藏研究进展-Review of reversible data hiding based on the spatial domain of images明文图像可逆信息隐藏综述-Overview of reversible data hiding in plaintext image

        本文第一节对论文主要算法进行描述,第二节介绍了代码对应目录结构和图像失真评价指标PSNR,第三节使用Matlab对算法进行复现,第四节对全文进行总结

目录

0. 总述

 目录

1. 论文简述 

 1.1 基于明文域的可逆数据隐藏算法概述

 1.2 嵌入

1.3 提取及恢复   

1.4 其他处理

        1.4.1 当不存在零点时

        1.4.2 P值和Z值的表示

2.准备工作

2.1目录结构

2.2评价指标——PSNR 

3.算法复现

3.1嵌入过程

3.2提取过程        

3.3算法评价

3.4代码改进思路

4.结语


1. 论文简述 

 1.1 基于明文域的可逆数据隐藏算法概述

        信息隐藏是一种可用于隐蔽通信、版权保护和内容取证的有效手段,其分类如图 1 所示。密码学将秘密信息加密为不可理解的乱码容易引起攻击者的注意。而信息隐藏通过对载体做适当修改能够将秘密信息嵌入到诸如文本、图像和音视频等多媒体文件中从而隐藏秘密信息的存在。

图1
图1. 信息隐藏技术分类

        可逆信息隐藏(RDH,又称可逆水印)是一项用于保护多媒体数据版权和内容完整性的隐蔽通信技术。通过此技术发送者可以对指定载体嵌入秘密信息后将其混入到公共信道中与正常载体一起传输隐藏嵌入行为。可逆信息隐藏的最大优势在于能够无损恢复原始内容使得嵌入提取操作不会对载体造成永久性的失真在司法、医学、军事等强调载体内容精确性的应用领域具备重要价值。

        RDH主要涉及两类参与角色:发送者和接收者。整个过程可以细分为3个阶段:信息嵌入阶段,信息提取阶段和图像还原阶段其框架如图 2 所示。首先在信息嵌入阶段发送者将秘密信息嵌入到原始图像中。另外在嵌入之前可以选择对秘密信息使用密钥加密以来提高安全性。然后将嵌入阶段处理得到的含密图像在无损信道上传输。最后接收者可以进行信息提取和图像还原。

图2
图2. RDH框架

         根据载体图像是否被加密,可逆信息隐藏研究可以分为明文域RDH和密文域RDH(RDHEI)RDHEIRDH的基础上发展而来能够实现载体内容保护和秘密信息传递的双重效果。本文所介绍算法是基于明文域HS的开山之作,方法也是本领域目前影响最深远引用次数最多的方法。HS的思想被后续多类方法采用,已经作为可逆算法设计的基本框架和研究的基石。

 1.2 嵌入

        1.统计:统计图像像素灰度值&

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值