手写卷积核达到pytorch卷积核函数99.99%的精度

import numpy as np
import torch
import torch.nn.functional as F


def zero_pad(X, pad):
    """
    对输入的矩阵进行零填充。
    参数:
        X:输入的矩阵,维度为 (m, n_C_prev, n_H_prev, n_W_prev)。
        pad:填充量。
    返回:
        X_pad:已经零填充后的矩阵,维度为 (m, n_C_prev, n_H_prev + 2*pad, n_W_prev + 2*pad)。
    """
    X_pad = np.pad(X, ((0, 0), (0, 0), (pad, pad), (pad, pad)), 'constant', constant_values=0)
    return X_pad


def conv_2d(input, weight, bias, stride, padding):
    """
    实现卷积层的前向传播。
    参数:
        input:来自上一层的激活值矩阵,维度为 (m, n_C_prev, n_H_prev, n_W_prev)。
        weight:权重参数,维度为 (n_C, n_C_prev, f, f)。
        bias:偏置参数,维度为 (n_C,)。
        stride:步幅。
        padding:填充量。
    返回:
        input1:卷积层的输出,维度为 (m, n_C, n_H, n_W)。
    """
    (m, n_C_prev, n_H_prev, n_W
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值