科学计算库numpy

这篇博客详细介绍了numpy库,重点讲解了numpy的ndarray对象,包括创建数组的各种方法,如array(), zeros(), ones(), arange()和empty()。还探讨了数组的数据类型、矢量化运算、广播机制、索引和切片,特别是花式索引和布尔型索引的用法。此外,还讨论了数组的转置和轴对称操作,以及numpy的通用函数,如一元和二元函数在科学计算中的应用。" 115336756,10844491,3060显卡TensorFlow2.4环境配置全攻略,"['CUDA', 'cuDNN', 'tensorflow', '深度学习', 'GPU环境']
摘要由CSDN通过智能技术生成

1.认识numpy数组对象

numpy中最重要的是一个特点就是其n维数组对象,即nadrray别名(array),该对象可以执行一些科学计算。

2.创建numpy数组

(1)array()函数

data=np.array([1,2,3])#一维数组
data2=np.array([1,2,3],[4,5,6])#二维数组

(2)zero()函数

np.zero((3,4))

array([[0,0,0,0],
       [0,0,0,0],   
        [0,0,0,0]])

(3)ones()函数

np.ones((1,2))

array([[1,1]])

(4)arrage()函数

 (5)empty()函数

3.ndarray对象的数据类型

ndarray.dtype可以创建一个表示数据类型的对象,如果希望获取数据类型的名称,则需要访问name属性进行获取。

 

 numpy中常见的数据类型

 4.数组运算

(1)矢量化运算

形状相等的数组之间的任何算术运算都会应用到元素级,即只用于位置相同的元素之间,所得的运算结果组成一个新的数组。

(2)数组广播

当形状不相等的数组执行算术计算的时候,就会出现广播机制,该机制会对数组进行扩展,使数组的shape属性值一样,这样就可以进行矢量化运算了。

(3)数组与标量间的运算 

5.ndarry的索引和切片

(1)一维数组和python列表结构差不多

(2)二维数组的索引和切片

 

(3)花式(数组)索引的基本使用

 花式索引是NumPy的一个术语,是指用整数数组或列表进行索引,然后再将数组或列表中的每个元素作为下标进行取值。

如果要操作的对象是一个二维数组,则获取的结果就是对应下标的一行数据。

(4)布尔型索引

布尔型索引指的是将一个布尔数组作为数组索引,返回的数据是布尔数组中True对应位置的值。

6.数组的转置和轴对称

数组的转置指的是将数组中的每个元素按照一定的规则进行位置变换。7.numpy通用函数

(1)常见的一元通用函数

通用函数(ufunc)是一种针对ndarray中的数据执行元素级运算的函数,函数返回的是一个新的数组。

 

(2)常见的二元函数

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值