D. Count GCD
这道题严格来讲不难,a[i]与b[i+1]最大公约数为a[i+1],所以a[i]与b[i+1]必定整除a[i+1],且a[i]/a[i+1]与b[i+1]/a[i+1]互质,所以我们只需要求1~m/a[i+1]中与a[i]/a[i+1]互质的数的个数。
网上看了一些代码,觉得难以理解,决定自己动手写一篇。
容斥原理:要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。
证明:二项式定理
若n为奇数,则令x=-1,y=1;
若n为偶数,则令x=1,y=-1;
可求得:
分解质因数:根据算术基本定理,不考虑排列顺序的情况下,每个正整数都能够以唯一的方式表示成它的质因数的乘积。
n=p1^a1 * p2^a2 *p3^a3.....pn^an
代码参上
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=1e6+100;
/*
利用容斥原理,先求不互质的个数 ans,最后结果 n-ans。
假如 m 有 2,3,5质因子,那么2, 3, 5的倍数与 m都不互质,但是会有重复。用容斥原理算出正确的即可。
k / 2 + k / 3 + k / 5 - k / (2 * 3) - k / (3 * 5) - k / (2 * 5) + k / (2 * 3 * 5)
出现奇数次的加,出现偶数次的减。
代码枚举所有质因子的组合时用二进制枚举。
*/
//先求m的因子,存放到p数组里
ll n,m,cnt,p[maxn];
void get_factor(ll m){
cnt=0;
for(int i=2;i*i<=m;i++){
if(m%i==0){
p[cnt++]=i;
while(m%i==0){
m/=i;
}
}
}
if(m>1){
p[cnt++]=m;
}
}
ll solve(ll n){
ll ans=0;//二进制枚举
for(int i=1;i < (1 << cnt);i++){
ll temp=1,t=0;
for(int j=0;j<cnt;j++){
if((1<<j)&i){
temp*=p[j];
t++;
}
}
if(t%2==1){
ans+=n/temp;
}
else{
ans-=n/temp;
}
}
return n-ans;
}
int main(){
scanf("%d%d",&n,&m);
get_factor(m);
cout<<solve(n)<<endl;
}