关于求1~n中与m互质的数的个数(容器原理+数论分解质因子)

D. Count GCD

这道题严格来讲不难,a[i]与b[i+1]最大公约数为a[i+1],所以a[i]与b[i+1]必定整除a[i+1],且a[i]/a[i+1]与b[i+1]/a[i+1]互质,所以我们只需要求1~m/a[i+1]中与a[i]/a[i+1]互质的数的个数。

网上看了一些代码,觉得难以理解,决定自己动手写一篇。

容斥原理:要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。

        证明:二项式定理

        

        若n为奇数,则令x=-1,y=1;

        若n为偶数,则令x=1,y=-1;

        可求得:\binom{1}{n}-\binom{2}{n}+\binom{3}{n}-\binom{4}{n}+...+\binom{n}{n}=1

分解质因数:根据算术基本定理,不考虑排列顺序的情况下,每个正整数都能够以唯一的方式表示成它的质因数的乘积。

        n=p1^a1 * p2^a2 *p3^a3.....pn^an

代码参上

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll; 
const int maxn=1e6+100; 
/*
利用容斥原理,先求不互质的个数 ans,最后结果 n-ans。
假如 m 有 2,3,5质因子,那么2, 3, 5的倍数与 m都不互质,但是会有重复。用容斥原理算出正确的即可。
k / 2 + k / 3 + k / 5 - k / (2 * 3) - k / (3 * 5) - k / (2 * 5) + k / (2 * 3 * 5)
出现奇数次的加,出现偶数次的减。
代码枚举所有质因子的组合时用二进制枚举。
*/
//先求m的因子,存放到p数组里
ll n,m,cnt,p[maxn];
void get_factor(ll m){
    cnt=0;
    for(int i=2;i*i<=m;i++){
        if(m%i==0){
            p[cnt++]=i;
            while(m%i==0){
                m/=i;
            } 
        }
    }
    if(m>1){
        p[cnt++]=m;
    }
} 
ll solve(ll n){
    ll ans=0;//二进制枚举
    for(int i=1;i < (1 << cnt);i++){
        ll temp=1,t=0;
        for(int j=0;j<cnt;j++){
            if((1<<j)&i){
                temp*=p[j];
                t++;
            }
        }
        if(t%2==1){
            ans+=n/temp;
        }
        else{
            ans-=n/temp;
        }
    }
    return n-ans;
}
int main(){
    scanf("%d%d",&n,&m);
    get_factor(m);
    cout<<solve(n)<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值