知识库功能的前后端

功能具体介绍

本功能支持用户上传一个文件,然后输入与该文件相关的问题,系统会给出相应的回答。如果用户不上传文件,直接询问问题,便会根据我们已有的数据库和问题给出对应的答案。同时,询问问题可以选择是否要携带自己的历史记录。我们也提供了一个接口,供用户与在线的智谱ai进行对话。

实现过程

### get_vectordb函数

主要功能是根据指定的参数获取或创建一个向量数据库对象。向量数据库对象用于存储和查询文本嵌入(向量化的文本数据)。该函数支持根据现有的数据库文件路径和持久化路径来加载数据库,如果数据库不存在,则创建新的数据库。这个函数首先通过嵌入类型和 API 密钥获取嵌入对象,然后检查持久化路径的存在情况。如果路径存在且不为空,则直接加载数据库;如果路径存在但为空或路径不存在,则创建新的数据库并加载知识库。最终返回一个向量数据库对象供后续使用。

### model_to_llm函数

主要功能是根据指定的参数创建一个语言模型(LLM)对象。这个函数专门用于创建智谱的 ChatGLM 系列模型,并支持通过 API 密钥进行访问。

### QA_chain_self类

它实现了一个不带历史记录的问答链,利用向量数据库和大语言模型来检索和生成答案。在初始化过程中,它会加载向量数据库和语言模型,并创建一个文档检索器和问答链对象。用户可以通过调用 `answer` 方法向系统提出问题,系统将利用向量数据库检索相关文档,并使用语言模型生成答案。该系统具有灵活的参数设置,可以控制生成答案的随机性和检索相关文档的数量。通过这种方式,用户可以快速获取准确的答案,实现了高效的问答交互。

### Chat_QA_chain_self类

它是一个带有历史记录的问答链系统。在初始化过程中,用户可以指定模型名称、温度系数、检索相似文档的数量等参数。该类包含了清空历史记录和更改历史记录长度的方法。核心方法是 `answer`,它接收用户提出的问题,并返回更新后的历史记录。在回答问题的过程中,系统会根据用户提出的问题和历史记录,利用向量数据库和语言模型生成答案。同时,还会将本次对话加入到历史记录中,以便下次使用。这个类的输入是用户提出的问题,输出是更新后的历史记录。它的功能是根据用户的问题和历史记录生成答案,并保持对话的历史记录。

同时代码中还涉及了数据库、embedding和llm等相关加载、配置和使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值