题意:
给一棵树,每次加上两个叶节点的距离并删除其中一个叶节点,问最大总距离和是多少。
题解:
叶节点的最大距离肯定是直径两端的距离;那么直径之外的点与其他节点的最远距离肯定在直径的某一端。那么我们首先把直径和其两端点求出来,再加上此节点到那个端点的距离;这个距离可用两个dfs 求直径端点时顺便求出;再考虑直径上的点,每次删掉一端的点就好了,sum+=;
/*keep on going and never give up*/
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define LL long long
#define fast std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
const double E = exp(1);
const double PI = acos(-1.0);
const int maxn=4e5+10;
const int Mod=1e9+7;
const int maxn = 2e5+10;
struct answer{
int u,v;
}a[maxn];
vector<int> G[maxn];
bool v[maxn];
int d[maxn],pre[maxn];
int n,tot;
int root,leaf;
LL ans;
void dfs(int u, int fa){
d[u] = d[fa]+1;
pre[u] = fa;//统计距离;
for (int i=0; i<G[u].size(); i++) if (G[u][i]!=fa) dfs(G[u][i],u);
}
void Find(int x, int df, int dr, bool flag = 1){
for (int i=0; i<G[x].size(); i++) {
if (G[x][i] == pre[x] || v[G[x][i]]) continue;
Find(G[x][i],df+1,dr+1);
}//找直径外的点;
if (flag) {
if (df>dr) {
a[tot].u = leaf;
a[tot].v = x;
ans += df;
}
else {
a[tot].u = root;
a[tot].v = x;
ans += dr;
}
tot++;
}
}
int main(){
scanf("%d",&n);
for (int i=1; i<=n; i++) G[i].clear();
tot = 0;
int u,v;
for (int i=1; i<n; i++) {
scanf("%d %d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
ans = 0;
d[0] = 0;
root = 1;
dfs(root,0);
for (int i=1; i<=n; i++) if (d[root]<d[i]) root = i;
leaf = 1;
dfs(root,0);//两遍dfs找到root和leaf;
for (int i=1; i<=n; i++) if (d[leaf]<d[i]) leaf = i;
memset(v,0,sizeof(v));
int x = leaf;
while (1){
v[x] = 1;
Find(x,d[leaf]-d[x],d[x]-1,0);
if (x == root) break;
x = pre[x];
}
x = leaf;
while (x!=root) {
a[tot].u = root; a[tot].v = x; tot++;
ans += d[x]-1;
x = pre[x];
}
printf("%I64d\n",ans);
for (int i=0; i<tot; i++) printf("%d %d %d\n",a[i].u,a[i].v,a[i].v);
}
ps:硬干2400的题真是太有意思了QwQ