项目目标设定
本周初,我们设定了人像分析系统的开发目标。系统将包括面部三庭五眼比例分析、黄金三角分析、眉毛、眼睛、鼻子和嘴唇的分析功能,并且根据分析结果生成详细的面部特征报告。
研究与准备
为了确保项目的顺利进行,我们研究了面部特征分析的相关技术和算法。重点放在如何准确提取脸部关键点并进行几何分析。通过实验室已有项目的技术基础和相关论文的学习,我们掌握了当前最先进的技术,特别是深度学习模型在面部关键点检测中的应用。
数据准备
我们在之前的收集数据时收集了大量人脸图像,用于训练和测试。每张图像都进行了关键点标注,包括眉毛、眼睛、鼻子和嘴唇等区域。数据的准备为后续的算法开发提供了坚实的基础。
面部关键点检测
开始编写面部关键点检测功能代码。使用预训练的深度学习模型来检测脸部的关键点,并将这些关键点转换为所需的格式。此功能是所有后续分析功能的基础。
三庭五眼比例分析
在完成关键点检测后,我们实现了三庭五眼比例分析。通过几何计算,系统能够判断脸部的三庭(上庭、中庭、下庭)和五眼(眼睛和两侧的留白部分)比例是否标准,并生成相关报告。
黄金三角分析
黄金三角分析功能用于评估脸部特定区域的比例是否符合理想的黄金比例。我们实现了计算左右眼外角和鼻尖形成的三角形的比例,并与黄金比例进行比较,生成分析报告。
眉毛、眼睛、鼻子和嘴唇分析
我们进一步扩展了系统功能,实现了眉毛、眼睛、鼻子和嘴唇的详细分析。每个模块包含了比例计算、位置判断等功能,并生成详细的报告,帮助用户了解面部各部分的特征。
调试与优化
对已实现的功能模块进行了全面的调试和优化。修复了代码中的错误,提高了算法的性能和准确性。通过大量测试,确保系统能够在不同类型的脸部图像上准确运行。
结论
通过本周的努力,我们成功实现了一个基础的人像分析系统,具备了三庭五眼比例分析、黄金三角分析、眉毛、眼睛、鼻子和嘴唇分析功能。未来,我们将继续优化算法,提高系统的准确性和鲁棒性,并增加更多的分析维度,为用户提供更加全面的面部特征分析服务。