动态规划算法2

本文通过C++代码展示了如何使用分治、枚举和动态规划方法解决最大子段和问题。给定一个可能包含负数的整数序列,目标是找到序列中连续子段的最大和。在所有子段中,如果所有数都是负数,则最大和为0。代码分别实现了这三种算法,并在主函数中进行了测试。
摘要由CSDN通过智能技术生成

任务:使用枚举、分治及动态规划三种算法实现最大子段和问题

任务描述:给定n个整数(可能为负数)组成的序列X,求该序列如x[i]+x[i+1]+…+x[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,x[i]+x[i+1]+…+x[j]},1<=i<=j<=n

输入:序列X

输出:最大子段和

//分治算法

#include<stdio.h>

int a[]={0,13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7,-9,4,8,1,4,-5,-2,1,-3,6,8,-18,9};

int MaxSubSum(int *a,int left,int right){

    int sum=0;

    if(left==right){

        sum=a[left]>0 ? a[left] : 0;

    }

    else{

        int center=(left+right)/2;

        int leftsum=MaxSubSum(a,left,center);

        int rightsum=MaxSubSum(a,center+1,right);

        int s1=0;

        int lefts=0;

        for(int i=center;i>=left;i--){

            lefts +=a[i];

            if(lefts>s1)

              s1=lefts;

        }

        int s2=0;

        int rights=0;

        for(int i=center;i<=right;i++){

            rights +=a[i];

            if(rights>s2)

              s2=rights;

        }

        sum=s1+s2;

        if(sum<leftsum){

          sum=leftsum;

    }

        if(sum<rightsum){

          sum=rightsum;

    }

    }

    return sum;

}

int MaxSum(int n,int*a){

    return MaxSubSum(a,1,n);

}

//枚举算法

int MaxSum(int n,int*a,int& besti,int& bestj){

    int sum=0;

    for(int i=1;i<=n;i++){

        int thissum=0;

        for(int j=i;j<=n;j++){

            thissum+=a[j];

            if(thissum>sum){

                sum=thissum;

                besti=i;

                bestj=j;

            }

        }

    }

    return sum;

}

//动态规划法

int MSum(int n,int *a){

    int sum=0,b=0;

    for(int i=1;i<=n;i++){

        if(b>0){

            b+=a[i];

        }

        else{

            b=a[i];

        }

        if(b>sum){

            sum=b;

        }

    }

    return sum;

}

//主函数

int main(){

    int besti=0,bestj=0;   

    printf("分治:\n sum=%d\n",MaxSubSum(a,0,30));

    printf("besti=%d bestj=%d",besti,bestj);

    printf("枚举:\n sum=%d\n",MaxSum(30,a,besti,bestj));

    printf("动态规划:\n sum=%d",MSum(30,a));

    return 0;

   

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值