一、维护区间最值
struct node
{
int l, r;
ll maxv;
ll lazy;
}tree[maxn << 2];
ll num[maxn];
inline void update(int k)
{
tree[k].maxv = max(tree[k << 1].maxv, tree[k << 1 | 1].maxv);
}
void build(int k, int l, int r)
{
tree[k].r = r, tree[k].l = l;
if (l == r)
{
tree[k].maxv = num[l];
return;
}
int mid = (l + r) / 2;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
update(k);
}
void pushdown(int k)//将点k的懒惰标记下传
{
if (!tree[k].lazy)
return;
tree[k << 1].maxv += tree[k].lazy;
tree[k << 1 | 1].maxv += tree[k].lazy;
tree[k << 1].lazy += tree[k].lazy;
tree[k << 1 | 1].lazy += tree[k].lazy; //下传点k的标记
tree[k].lazy = 0; //清空点k的标记
}
void changeSegment(int k, int l, int r, ll x)
{
if (tree[k].l >= l && tree[k].r <= r)//如果找到了全部元素都要被修改的区间
{
tree[k].maxv += x;
tree[k].lazy += x;
return;
}
pushdown(k);
if (l <= tree[k << 1].r)
changeSegment(k << 1, l, r, x);
if (r >= tree[k << 1 | 1].l)
changeSegment(k << 1 | 1, l, r, x);
update(k);
}
ll query(int k, int l, int r)
{
if (tree[k].l >= l && tree[k].r <= r)
{
return tree[k].maxv;
}
pushdown(k); //只有查询时可以不加
ll ans = -inf;
if (tree[k << 1].r >= l)
ans = max(ans, query(k << 1, l, r));
if (tree[k << 1 | 1].l <= r)
ans = max(ans, query(k << 1 | 1, l, r));
return ans;
}
二、个数取反,询问操作后01串中1的个数
struct node
{
int l, r;
int cnt1;
int lazy;
}tree[maxn << 2];
int num[maxn];
inline void update(int k)
{
tree[k].cnt1 = tree[k << 1].cnt1 + tree[k << 1 | 1].cnt1;
}
void build(int k, int l, int r)
{
tree[k].l = l, tree[k].r = r;
if (l == r)
{
tree[k].cnt1 = num[l];
return;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
update(k);
}
void pushdown(int k)
{
if (tree[k].lazy == 0)
return;
tree[k << 1].cnt1 = tree[k << 1].r - tree[k << 1].l + 1 - tree[k << 1].cnt1;
tree[k << 1 | 1].cnt1 = tree[k << 1 | 1].r - tree[k << 1 | 1].l + 1 - tree[k << 1 | 1].cnt1;
tree[k << 1].lazy ^= 1;
tree[k << 1 | 1].lazy ^= 1;
tree[k].lazy = 0;
}
void changerange(int k, int l, int r)
{
if (tree[k].l >= l && tree[k].r <= r)
{
tree[k].cnt1 = tree[k].r - tree[k].l + 1 - tree[k].cnt1;
tree[k].lazy ^= 1;
return;
}
pushdown(k);
if (tree[k << 1].r >= l)
changerange(k << 1, l, r);
if (tree[k << 1 | 1].l <= r)
changerange(k << 1 | 1, l, r);
update(k);
}
ll query(int k, int l, int r)
{
if (tree[k].l >= l && tree[k].r <= r)
{
return tree[k].cnt1;
}
pushdown(k);
ll ans = 0;
if (tree[k << 1].r >= l)
ans += query(k << 1, l, r);
if (tree[k << 1 | 1].l <= r)
ans += query(k << 1 | 1, l, r);
return ans;
}
三、区间修改,单点修改,区间查询
可以省略pushdown,直接全部下放(可能会T)
struct node
{
int l, r; //该节点的区间下标
int maxv;
}tree[maxn << 2];
int num[maxn];
inline void update(int k)
{
tree[k].maxv = max(tree[k << 1].maxv, tree[k << 1 | 1].maxv);
}
inline void build(int k, int l, int r)
{
tree[k].l = l, tree[k].r = r;
if (l == r)
{
tree[k].maxv = num[l];
return;
}
int mid = (l + r) >>1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
update(k);
}
inline void changeone(int k, int x, int y)
{
if (tree[k].l == tree[k].r)
{
tree[k].maxv = y;
return;
}
int mid = (tree[k].l + tree[k].r) >>1;
if (x <= mid)
changeone(k << 1, x, y);
else
changeone(k << 1 | 1, x, y);
update(k);
}
inline void changeSegment(int k, int l, int r, int x)
{
if (!tree[k].maxv) //******//
return;
if (tree[k].l==tree[k].r)
{
tree[k].maxv &= x;
return;
}
if (tree[k << 1].r >= l)
changeSegment(k << 1, l, r, x);
if (tree[k << 1 | 1].l <= r)
changeSegment(k << 1 | 1, l, r, x);
update(k);
}
inline int query(int k, int l, int r)
{
if (tree[k].l >= l && tree[k].r <= r)
return tree[k].maxv;
int ans = 0;
if (tree[k << 1].r >= l)
ans = max(ans, query(k << 1, l, r));
if (tree[k << 1 | 1].l <= r)
ans = max(ans, query(k << 1 | 1, l, r));
return ans;
}
四、初始时,区间1~10^18都是0,有以下三种操作
但是可以归结为,区间赋值和区间反转,主要处理离散化、重叠标记下放问题和树上二分
struct node
{
int l, r;
int val; //权值线段树,维护的值是区间的1的个数
int cov, rev; //cov是-1代表没变化,0代表赋值0,1代表赋值1
}tree[maxn << 4];
struct Q
{
ll l, r;
int ope;
}que[maxn];
void pushup(int k)
{
tree[k].val = tree[k << 1].val + tree[k << 1 | 1].val;
}
void build(int k, int l, int r)
{
tree[k].l = l, tree[k].r = r;
tree[k].cov = -1, tree[k].rev = 0;
if (l == r)
{
tree[k].val = 0;
return;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
pushup(k);
}
void settag(int k, int cov, int rev)
{
//处理结点k的标记
if (cov != -1) //如果有覆盖,直接覆盖
{
tree[k].cov = cov;
tree[k].rev = 0;
}
else if (rev) //如果有反转
{
if (tree[k].cov != -1) //本身有覆盖
{
tree[k].cov = tree[k].cov ^ 1;
tree[k].rev = 0;
}
else //本身无覆盖
{
if (tree[k].rev)
tree[k].rev = 0;
else
tree[k].rev = 1;
}
}
if (cov == 1) //处理子节点k的值
tree[k].val = tree[k].r - tree[k].l + 1;
else if (rev == 1)
tree[k].val = tree[k].r - tree[k].l + 1 - tree[k].val;
else if (cov == 0)
tree[k].val = 0;
}
void pushdown(int k)
{
settag(k << 1, tree[k].cov, tree[k].rev); //push到两个叶子节点并重置当前点标记
settag(k << 1 | 1, tree[k].cov, tree[k].rev);
tree[k].cov = -1, tree[k].rev = 0;
}
void changerange(int k, int l, int r, int ope)
{
if (tree[k].l >= l && tree[k].r <= r)
{
if (ope == 1)
settag(k, 1, 0);
else if (ope == 2)
settag(k, 0, 0);
else
settag(k, -1, 1);
return;
}
pushdown(k);
if (tree[k << 1].r >= l)
changerange(k << 1, l, r, ope);
if (tree[k << 1 | 1].l <= r)
changerange(k << 1 | 1, l, r, ope);
pushup(k);
}
int query(int k)
{
if (tree[k].l == tree[k].r)
{
return tree[k].l;
}
pushdown(k);
//树上二分,要么往左走,要么往右走
if (tree[k << 1].val < (tree[k << 1].r - tree[k << 1].l + 1))
return query(k << 1);
else
return query(k << 1 | 1);
}
ll a[maxn * 3];
void solve()
{
int n;
cin >> n;
ll num = 1;
a[1] = 1;
for (int i = 1; i <= n; i++)
{
cin >> que[i].ope >> que[i].l >> que[i].r;
//答案有可能的数就是修改区间的两端及右端点加一
a[++num] = que[i].l;
a[++num] = que[i].r;
a[++num] = que[i].r + 1;
}
//将答案有可能的区间离散化,最后通过a数组查询原值
sort(a + 1, a + num + 1);
num = unique(a + 1, a + num + 1) - (a + 1);
for (int i = 1; i <= n; i++)
{
que[i].l = lower_bound(a + 1, a + num, que[i].l) - a;
que[i].r = lower_bound(a + 1, a + num, que[i].r) - a;
}
build(1, 1, num);
for (int i = 1; i <= n; i++)
{
changerange(1, que[i].l, que[i].r, que[i].ope);
int ans = query(1);
cout << a[ans] << '\n';
}
}
可以将lazy合并成一个
struct node
{
int l, r;
int val; //权值线段树,维护的值是区间的1的个数
//int cov, rev; //cov是-1代表没变化,0代表赋值0,1代表赋值1
int lazy; //如果是01代表置01,3代表反转
}tree[maxn << 4];
struct Q
{
ll l, r;
int ope;
}que[maxn];
void pushup(int k)
{
tree[k].val = tree[k << 1].val + tree[k << 1 | 1].val;
}
void build(int k, int l, int r)
{
tree[k].l = l, tree[k].r = r;
//tree[k].cov = -1, tree[k].rev = 0;
tree[k].lazy = -1;
if (l == r)
{
tree[k].val = 0;
return;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
pushup(k);
}
void settag(int k, int lazy)
{
//处理结点k的标记
if (lazy != -1&&lazy!=3) //如果有覆盖,直接覆盖
{
tree[k].lazy = lazy;
}
else if (lazy==3) //如果有反转
{
if (tree[k].lazy != -1&&tree[k].lazy!=3) //本身有覆盖
{
tree[k].lazy = tree[k].lazy ^ 1;
}
else //本身无覆盖
{
if (tree[k].lazy==3)
tree[k].lazy = -1;
else
tree[k].lazy = 3;
}
}
if (lazy == 1) //处理子节点k的值
tree[k].val = tree[k].r - tree[k].l + 1;
else if (lazy == 3)
tree[k].val = tree[k].r - tree[k].l + 1 - tree[k].val;
else if (lazy == 0)
tree[k].val = 0;
}
void pushdown(int k)
{
settag(k << 1, tree[k].lazy); //push到两个叶子节点并重置当前点标记
settag(k << 1 | 1, tree[k].lazy);
tree[k].lazy = -1;
}
void changerange(int k, int l, int r, int ope)
{
if (tree[k].l >= l && tree[k].r <= r)
{
if (ope == 1)
settag(k, 1);
else if (ope == 2)
settag(k, 0);
else
settag(k, 3);
return;
}
pushdown(k);
if (tree[k << 1].r >= l)
changerange(k << 1, l, r, ope);
if (tree[k << 1 | 1].l <= r)
changerange(k << 1 | 1, l, r, ope);
pushup(k);
}
另一种风格的线段树
struct qu
{
int ty;
ll l, r;
}q[maxn];
struct tag
{
int re, co;
};
struct node
{
tag t;
int val, sz;
}seg[maxn << 4];
tag operator + (const tag& l, const tag& r)
{
tag a = { 0, -1 };
if (r.co != -1)
a.co = r.co;
else if (r.re)
{
if (l.co != -1)
a.co = l.co ^ 1;
else
{
if (!l.re)
a.re = 1;
}
}
else
return l;
return a;
}
void settag(int k, tag t)
{
seg[k].t = seg[k].t + t;
if (t.co == 1)
seg[k].val = seg[k].sz;
else if (t.re == 1)
seg[k].val = seg[k].sz - seg[k].val;
else if (t.co == 0)
seg[k].val = 0;
}
void update(int k)
{
seg[k].val = seg[k << 1].val + seg[k << 1 | 1].val;
}
void pushdown(int k)
{
settag(k << 1, seg[k].t);
settag(k << 1 | 1, seg[k].t);
seg[k].t = { 0, -1 };
}
void build(int k, int l, int r)
{
seg[k].t = { 0, -1 };
seg[k].sz = r - l + 1;
if (l == r)
{
seg[k].val = 0;
return;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
update(k);
}
void modify(int k, int l, int r, int ql, int qr, tag t)
{
if (l == ql && r == qr)
{
settag(k, t);
return;
}
int mid = (l + r) >> 1;
pushdown(k);
if (qr <= mid)
modify(k << 1, l, mid, ql, qr, t);
else if (mid < ql)
modify(k << 1 | 1, mid + 1, r, ql, qr, t);
else
modify(k << 1, l, mid, ql, mid, t), modify(k << 1 | 1, mid + 1, r, mid + 1, qr, t);
update(k);
}
int query(int k, int l, int r)
{
if (l == r)
{
return l;
}
int mid = (l + r) >> 1;
pushdown(k);
if (seg[k << 1].val < seg[k << 1].sz)
return query(k << 1, l, mid);
else
return query(k << 1 | 1, mid + 1, r);
}
ll a[3 * maxn];
void solve()
{
int n;
cin >> n;
ll num = 2;
a[1] = 1;
for (int i = 1; i <= n; i++)
{
cin >> q[i].ty >> q[i].l >> q[i].r;
a[num++] = q[i].l;
a[num++] = q[i].r;
a[num++] = q[i].r + 1ll;
}
sort(a + 1, a + num);
num = unique(a + 1, a + num) - (a + 1);
for (int i = 1; i <= n; i++)
{
q[i].l = lower_bound(a + 1, a + num, q[i].l) - a;
q[i].r = lower_bound(a + 1, a + num, q[i].r) - a;
}
build(1, 1, num);
for (int i = 1; i <= n; i++)
{
if (q[i].ty <= 2)
modify(1, 1, num, q[i].l, q[i].r, tag({ 0, q[i].ty & 1 }));
else
modify(1, 1, num, q[i].l, q[i].r, tag({ 1, -1 }));
int ans = query(1, 1, num);
cout << a[ans] << endl;
}
}
五、对区间进行染色,求n次染色(每次颜色都不同)后有多少有多少种不同的颜色
struct node
{
int l, r;
int lazy;
}tree[maxn << 2];
int x[maxn], y[maxn], a[maxn * 3];
set<int>st;
void build(int k, int l, int r)
{
tree[k].l = l, tree[k].r = r, tree[k].lazy = 0;
if (l == r)
return;
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
}
void pushdown(int k)
{
if (!tree[k].lazy)
return;
tree[k << 1].lazy = tree[k << 1 | 1].lazy = tree[k].lazy;
tree[k].lazy = 0;
}
void change(int k, int l, int r, int x)
{
if (tree[k].l >= l && tree[k].r <= r)
{
tree[k].lazy = x;
return;
}
pushdown(k);
if (tree[k << 1].r >= l)
change(k << 1, l, r, x);
if (tree[k << 1 | 1].l <= r)
change(k << 1 | 1, l, r, x);
}
void query(int k)
{
if (tree[k].l == tree[k].r && !tree[k].lazy)
return;
if (tree[k].lazy)
{
st.insert(tree[k].lazy);
return;
}
pushdown(k);
query(k << 1);
query(k << 1 | 1);
}
void solve()
{
st.clear();
int n;
cin >> n;
int cnt = 0;
for (int i = 1; i <= n; i++)
{
cin >> x[i] >> y[i];
a[++cnt] = x[i];
a[++cnt] = y[i];
a[++cnt] = y[i] + 1;
}
sort(a + 1, a + cnt + 1);
cnt = unique(a + 1, a + cnt + 1) - (a + 1);
for (int i = 1; i <= n; i++)
{
x[i] = lower_bound(a + 1, a + cnt + 1, x[i]) - a;
y[i] = lower_bound(a + 1, a + cnt + 1, y[i]) - a;
}
build(1, 1, cnt);
for (int i = 1; i <= n; i++)
{
change(1, x[i], y[i], i);
}
query(1);
cout << st.size() << '\n';
}