图论(最近公共祖先LCA)

一、基础

1、定义:在一棵有根树上,对于一个结点z,既是x的祖先,也是y的祖先,那么z是x,y的公共祖先,如果z在x,y的所有公共祖先中深度最大的,我们称之为最近公共祖先,记z = LCA(x,y)

2、暴力寻找(最坏时间复杂度O(n)):

(1)、从x向上走到根节点,并且标记经过的结点,然后令y向上走到根节点,当第一次遇到已标记的点时,就找到了LCA(x,y)

(2)、令x,y中较深的点先向上走到x,y等深处,然后同时向上访问,直到访问到同一结点,该结点就是LCA(x,y)

二、树上倍增法求LCA(在线)

倍增法求LCA=树上倍增法+暴力寻找第二种方法

1、树上倍增部分的dp表:

①设dp[x][k]表示x的2^k辈祖先,即向根节点走2^k步到达的结点

②如果这样的结点不存在则dp[x][k] = 0,那么dp[x][0]就代表x的父节点

③除此之外,对于k∈[1, log n],有dp[x][k] = dp[dp[x][k - 1]][k - 1],代表x的2^k辈祖先等同于x的2^(k - 1)辈祖先的2^(k - 1)辈祖先

我们可以对树进行遍历,一次计算每个点对应的dp数组中的值,顺便求出结点在树中的深度

2、利用dp数组求LCA

①令deep[x]>=deep[y],用二进制拆分思想,把x向上调整到与y同一深度。具体来说,就是x尝试向上走k=2^log n、……、2^1、2^0步,检查到达的结点是否比y深,则令x=dp[x][k],如果此时x = y,则LCA(x,y)=x

②利用二进制拆分思想,把x,y同时向上调整,保持同一深度,且二者不相会。具体来说,就是尝试向上走k = 2^log n、……、2^1、2^0步,如果dp[x][k] ≠ dp[y][k],则令x = dp[x][k],y = dp[y][k]此时x,y必定之差一步就相会了,他们的父节点dp[x][0]就是LCA(x,y)

3、代码实现

int to[maxn << 1], nex[maxn << 1], head[maxn];
int dp[maxn][32], deep[maxn], dis[maxn];
int cnt, nn, n, m, r;
void add(int u, int v)
{
	to[++cnt] = v;
	nex[cnt] = head[u];
	head[u] = cnt;
}
void bfs(int root)
{
	queue<int>q;
	q.push(root);
	deep[root] = 1;
	while (!q.empty())
	{
		int u = q.front();
		q.pop();
		for (int i = head[u]; i; i = nex[i])
		{
			int v = to[i];
			if (deep[v])
				continue;
			deep[v] = deep[u] + 1;
			dp[v][0] = u;
			for (int j = 1; j <= nn; j++)
				dp[v][j] = dp[dp[v][j - 1]][j - 1];
			q.push(v);
		}
	}
}
void dfs(int x)
{
	for (int i = 1; i <= nn; i++)
		dp[x][i] = dp[dp[x][i - 1]][i - 1];


	for (int i = head[x]; i; i = nex[i])
	{
		int y = to[i];
		if (deep[y])
			continue;
		deep[y] = deep[x] + 1;
		dp[y][0] = x;
		dfs(y);
	}
	return;
}
int lca(int u, int v)
{
	if (deep[u] > deep[v])
		swap(u, v);
	for (int i = nn; i >= 0; i--)
	{
		if (deep[dp[v][i]] >= deep[u])
			v = dp[v][i];
	}
	if (u == v)
		return u;
	for (int i = nn; i >= 0; i--)
	{
		if (dp[u][i] != dp[v][i])
		{
			u = dp[u][i];
			v = dp[v][i];
		}
	}
	return dp[u][0];
}
void solve()
{
	cin >> n >> m >> r;
	nn = (int)(log(n) / log(2)) + 1;
	for (int i = 1; i <= n; i++)
		head[i] = deep[i] = 0;
	cnt = 0;

	for (int i = 0; i < n - 1; i++)
	{
		int u, v, w;
		cin >> u >> v;
		add(u, v);
		add(v, u);
	}
	deep[r] = 1;
	dfs(r);
    //bfs(r);
	for (int i = 0; i < m; i++)
	{
		int u, v;
		cin >> u >> v;
		cout << lca(u, v) << '\n';
	}
}

三、Tarjan求LCA(离线)

1、在深度优先遍历的任意时刻,一共有三种点:

①已经访问完毕并且回溯的结点,即子节点全部访问完毕,这些节点标记为2

②已经开始递归但是尚未回溯的结点,这些结点就是正在访问的结点x以及x的父节点,这些结点标记为1

③尚未访问的结点,标记为0

2、对于正在访问的结点x,它到根节点的路径已经标记为1,若此时y是已经访问并回溯的结点(表标记为2),则从y向上走到根,遇到的第一个标记为1的点就是LCA(x,y)

3、并查集优化:

当一个结点获得整数2的标记时,把它所在的集合合并到它的父节点所在的集合中,此时它的父节点一定标记为1,且单独构成一个集合。

这相当于每个完成回溯的结点都有一个指针指向它的父节点,只需查询y所在集合的代表元素,即find操作,就等价于从y向上一直走到一个开始递归但未完成回溯的结点,即LCA(x,y)

4、此时扫描与x相关的所有询问,若询问当中的一个点y的标记为2,那么LCA(x,y)就是find(y)

5、代码实现

int to[maxn << 1], nex[maxn << 1], head[maxn];
int fa[maxn], vis[maxn], ans[maxn];
vector<int>query[maxn], queryid[maxn];
int cnt, n, m, r;
void add(int u, int v)
{
	to[++cnt] = v;
	nex[cnt] = head[u];
	head[u] = cnt;
}
void addquery(int u, int v, int id)
{
	query[u].push_back(v);
	query[v].push_back(u);
	queryid[u].push_back(id);
	queryid[v].push_back(id);
}
int find(int x)
{
	return fa[x] == x ? x : fa[x] = find(fa[x]);
}
void tarjan(int u)
{
	vis[u] = 1;
	for (int i = head[u]; i; i = nex[i])
	{
		int v = to[i];
		if (vis[v])
			continue;
		tarjan(v);
		fa[v] = u;
	}
	for (int i = 0; i < query[u].size(); i++)
	{
		int v = query[u][i], id = queryid[u][i];
		if (vis[v] == 2)
			ans[id] = find(v);
	}
	vis[u] = 2;
}
void solve()
{
	cin >> n >> m >> r;
	for (int i = 1; i <= n; i++)
	{
		fa[i] = i;
	}
	for (int i = 0; i < n - 1; i++)
	{
		int u, v;
		cin >> u >> v;
		add(u, v);
		add(v, u);
	}
	for (int i = 0; i < m; i++)
	{
		int u, v;
		cin >> u >> v;
		if (u == v)
			ans[i] = u;
		else
			addquery(u, v, i);
	}
	tarjan(r);
	for (int i = 0; i < m; i++)
	{
		cout << ans[i] << '\n';
	}
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值