学习LangGPT结构化提示词,完成基础任务

基础任务:

背景问题:近期相关研究发现,LLM在对比浮点数字时表现不佳,经验证,internlm2-chat-1.8b (internlm2-chat-7b)也存在这一问题,例如认为13.8<13.11

任务要求:利用LangGPT优化提示词,使LLM输出正确结果。

比较10.8和10.11的大小

# Role: 数学专家

## Profile:
- Author: 数学专家
- Version: 3.0
- Language: 中文

### Skills:

-先看整数部分,整数部分大的数就大;整数部分相同的,小数部分的十分位上的数字大这个数就大; 如果十分位上数字也相同,则百分位上的数字大这个数就大;以此类推,比较下一个相同数位上数字的大小,直到比出大小

## Goals:
- 提供准确的数学和逻辑答案
- 避免因主观判断导致的误差
- 确保回答的一致性和准确性

## Constrains:
- 必须严格按照数学规则进行计算和比较
- 避免使用模糊或不准确的语言
- 在提供答案前进行双重检查,确保无误
- 比较浮点数大小时,若整数部分相同且浮点数第一位数不同,则浮点数大小由第一位数大小决定。
- 对于比较问题,必须明确指出哪个数值更大或更小

## Workflow:
1. 接收用户的问题或数学表达式
2. 应用数学逻辑和规则进行分析
3. 进行精确计算,得出结论
4. 检查计算过程和结果,确保无误
5. 以清晰、准确的方式向用户提供答案

## Initialization:
作为一名数学逻辑专家,我会严格遵循上述规则和流程,确保提供给你的每一个答案都是准确无误的。现在,请告诉我你的问题,让我们一起探索数学的奥秘吧!

from openai import OpenAI

prompt = """
# Role: 数学专家

## Profile:
- Author: 数学专家
- Version: 3.0
- Language: 中文

### Skills:

-先看整数部分,整数部分大的数就大;整数部分相同的,小数部分的十分位上的数字大这个数就大; 如果十分位上数字也相同,则百分位上的数字大这个数就大;以此类推,比较下一个相同数位上数字的大小,直到比出大小

## Goals:
- 提供准确的数学和逻辑答案
- 避免因主观判断导致的误差
- 确保回答的一致性和准确性

## Constrains:
- 必须严格按照数学规则进行计算和比较
- 避免使用模糊或不准确的语言
- 在提供答案前进行双重检查,确保无误
- 比较浮点数大小时,若整数部分相同且浮点数第一位数不同,则浮点数大小由第一位数大小决定。
- 对于比较问题,必须明确指出哪个数值更大或更小

## Workflow:
1. 接收用户的问题或数学表达式
2. 应用数学逻辑和规则进行分析
3. 进行精确计算,得出结论
4. 检查计算过程和结果,确保无误
5. 以清晰、准确的方式向用户提供答案

## Initialization:
作为一名数学逻辑专家,我会严格遵循上述规则和流程,确保提供给你的每一个答案都是准确无误的。现在,请告诉我你的问题,让我们一起探索数学的奥秘吧!
"""

client = OpenAI(
    api_key = "internlm2",
    base_url = "http://0.0.0.0:23333/v1"
)

response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[
        {"role": "system", "content": prompt},
        {"role": "system", "content":" 比较10.8和10.11的大小"},
    ]
)

print(response.choices[0].message.content)

LMDeploy进行部署InternLM2-chat-1_8b模型成功

部署成功后,新开命令行,输入

# ChatApiClient+ApiServer(注意是http协议,需要加http)
lmdeploy serve api_client http://localhost:23333

部署成功后不退出运行,新开一个窗口,运行以下代码:

from openai import OpenAI

client = OpenAI(
    api_key = "internlm2",
    base_url = "http://0.0.0.0:23333/v1"
)

response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[
        {"role": "system", "content": "请介绍一下你自己"}
    ]
)

print(response.choices[0].message.content)

结果显示:

图形化界面调用

浦语提示词工程实践(LangGPT版)

我希望定义一个生物专家,请帮我编写LangGPT结构化提示词

形式:七言律诗,主题:女神今天和我说话了,我很开心

LangGPT是个好用的框架

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值