LeetCode做题记录(第一天)198. 打家劫舍

题目: 198. 打家劫舍

标签:数组 动态规划
题目信息:
在这里插入图片描述
在这里插入图片描述

思路一:

这道题就是到动态规划题,动态规划题有个特性,不过我现在还没领悟明白。
不过好在我知道做动态规划题的套路。
第一步: 确定dp数组及其下标含义
这里我们的dp数组下标含义大概就为偷到第i家时的最大收获。
第二步:确定递推公式
由题目信息可知,小偷在第i家时,有两种情况:
1,前面一家偷了。2,前面一家没偷。
如果是第一种情况,偷了前面一家就不能偷这家了,不然会被抓。
如果是第二种情况,没偷前面一家那就偷这家,
所以可以得到dp[i] = max(dp[i-1],dp[i-2]+nums[i])
第三步:初始化dp数组
首先新建dp数组,里面的值全为0。
由递推公式可以得知,有i-2的存在,所以就要先初始化两项,分别是dp[0]和dp[1]。
第四步:遍历,生成dp数组
这一步就是遍历,按递推公式来生成dp数组了。
第五步
print dp数组,看看对不对,结束。

代码实现:

class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n==0){
            return 0;
        }else if(n==1){
            return nums[0];
        }
        //1. 确定dp数组含义
        vector<int>dp(n,0);//偷到第i家时的最大钱数
        //2. 确定递推公式
        //如题,每家只能偷一次,不能偷相邻的,
        //那么dp[i]要么是dp[i-1],要么是dp[i-2]+nums[i]
        //所以,dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
        //3. 遍历初始化dp数组
        //既然dp[i]是由dp[i-1],dp[i-2]而来,那么dp[0],dp[1]就都要有初始化值才行
        dp[0]=nums[0];
        dp[1]=max(nums[0],nums[1]);    
        for(int i=2;i<n;i++){
            dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
        }
        return dp[n-1];
    }
    
};

没注释的代码:

class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n==0){
            return 0;
        }else if(n==1){
            return nums[0];
        }
        vector<int>dp(n,0);
        dp[0]=nums[0];
        dp[1]=max(nums[0],nums[1]);    
        for(int i=2;i<n;i++){
            dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
        }
        return dp[n-1];
    }
    
};

时间复杂度分析:
一层for循环,O(n)

总结:

dp五步法:
第一步: 确定dp数组及其下标含义
第二步:确定递推公式
第三步:初始化dp数组
第四步:遍历,生成dp数组
第五步:print dp数组,看看对不对,结束。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泉绮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值