7-1 进制转换
输入十进制整数N和待转换的进制x(2、8、16),分别代表十进制N转换成二进制、八进制和十六进制,输出对应的结果。十六进制中A~F用大写字母表示。
输入格式:
输入两个整数N(十进制整数N)和x(x进制),中间用空格隔开。
输出格式:
输出对应的结果。
输入样例:
在这里给出一组输入。例如:
123 2
输出样例:
在这里给出相应的输出。例如:
1111011
输入样例:
在这里给出一组输入。例如:
123 16
输出样例:
在这里给出相应的输出。例如:
7B
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int eps = 1e-8;// 一个极小值
const int N = 1e4 + 100;
const int M = 3e3 + 100;
const int INF = 0x3f3f3f3f;
const LL LINF = 0x3f3f3f3f3f3f3f3f;
#define PI acos(-1.0)
stack<char> s;// stl的容器
int main()
{
int n, r;
cin >> n >> r;
if(n == 0) cout << "0" << endl;
if(r == 16){
while(n){
int x = n % r;
if(x < 10) s.push(x + '0');// 将int型转换为char型,使其能够存入char类型的栈中
else s.push(x - 10 + 'A');
n /= r;
}
}
else{
while(n){
int x = n % r;
s.push(x + '0');// 栈的特点:先进后出
n /= r;
}
}
while(!s.empty()){
cout << s.top();// 栈顶是最后进栈的数
s.pop();
}
return 0;
}
**为了用stl容器偷懒我真的努力了23333
7-2 中缀表达式转换为后缀表达式
所谓中缀表达式,指的是运算符处于操作数的中间(例:3 * ( 4 + 2 )),中缀表达式是人们常用的算术表示方法,但中缀表达式不容易被计算机解析,因为既要考虑运算符的优先级,还要考虑括号的处理。但中缀表达式仍被许多程序语言使用,因为它符合人们的普遍用法。后缀表达式,指的是不包含括号,运算符放在两个操作数的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则,也不需要考虑括号)。
给出一个中缀表达式,请将其转换为后缀表达式并输出。
输入格式:
只有一行,是一个长度不超过1000的字符串,表示一个中缀表达式。表达式里只包含+-*/与小括号这几种符号。其中小括号可以嵌套使用。运算符、操作数之间用一个空格分隔,数据保证输入的操作数中不会出现负数,保证除数不会为0。
输出格式:
输出对应的后缀表达式。运算符、操作数之间用一个空格分隔,但行尾无多余空格。
输入样例:
3 * ( 4 + 2 )
输出样例:
3 4 2 + *
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
int main()
{
string a;// 在c++里不能用gets了
char s[20];
getline(cin, a);
int len = a.size(), f = 0, cnt = -1;
for(int i = 0; i < len; i++){
if(a[i] >= '0' && a[i] <= '9'){
if(f) printf(" ");
f = 1;
while(a[i] >= '0' && a[i] <= '9'){
printf("%c", a[i++]);// 遇到数字就输出
}
i--;// 返回去输出空格
}
else{
if(a[i] == '(') s[++cnt] = a[i];// 遇左括号就“入栈”
else if(a[i] == '*' || a[i] == '/'){
while(s[cnt] == '*' || s[cnt] == '/' && cnt != -1){
printf(" %c", s[cnt--]);
}
s[++cnt] = a[i];
}
else if(a[i] == ')'){
while(s[cnt] != '('){
printf(" %c", s[cnt--]);
}// 不是左括号(可能是加or减)就输出
cnt--;// 无论是否有输出都得出个栈~最后左括号会出栈
}
else if(a[i] == '+' || a[i] == '-'){
while(s[cnt] != '(' && cnt != -1){
printf(" %c", s[cnt--]);
}
s[++cnt] = a[i];
}
}
}
while(cnt != -1){
printf(" %c", s[cnt--]);
}
return 0;
}
**这个 只限一位数字。。
7-3 后缀式求值
我们人类习惯于书写“中缀式”,如 3 + 5 * 2
,其值为13
。 (p.s. 为什么人类习惯中缀式呢?是因为中缀式比后缀式好用么?)
而计算机更加习惯“后缀式”(也叫“逆波兰式”,Reverse Polish Notation)。上述中缀式对应的后缀式是: 3 5 2 * +
现在,请对输入的后缀式进行求值。
输入格式:
在一行中输入一个后缀式,运算数
和运算符
之间用空格分隔,运算数长度不超过6
位,运算符仅有+ - * /
四种。
输出格式:
在一行中输出后缀式的值,保留一位小数。
输入样例:
3 5.4 2.2 * +
输出样例:
14.9
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
int main()
{
char str[10];
double st[100];
int top = 0;
while(~scanf("%s", str)){// 这是一个字符一个字符输入的~
if(str[1] == '\0' && (str[0] == '+' || str[0] == '-' || str[0] == '*' || str[0] == '/')){
double num1 = st[--top];
double num2 = st[--top];
double res;
switch(str[0]){
case '+':
res = num2 + num1;
st[top++] = res;
break;
case '-':
res = num2 - num1;
st[top++] = res;
break;
case '*':
res = num2 * num1;
st[top++] = res;
break;
case '/':
res = num2 / num1;
st[top++] = res;
break;
}
}
else{
double num;
sscanf(str, "%lf", &num);// 从str中取出double类型的元素
st[top++] = num;
}
}
printf("%.1lf", st[0]);
return 0;
}
**sscanf有好多用法
7-4 括号匹配
给定一串字符,不超过100个字符,可能包括括号、数字、字母、标点符号、空格,编程检查这一串字符中的( ) ,[ ],{ }是否匹配。
输入格式:
输入在一行中给出一行字符串,不超过100个字符,可能包括括号、数字、字母、标点符号、空格。
输出格式:
如果括号配对,输出yes,否则输出no。
输入样例1:
sin(10+20)
输出样例1:
yes
输入样例2:
{[}]
输出样例2:
no
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 100;
int main()
{
string s;
int top = 0;
char str[N];
getline(cin, s);
int i = 0;
int len = s.size();
for(i = 0; i < len; i++){
if(s[i] == '(' || s[i] == '[' || s[i] == '{'){
str[++top] = s[i];
}
if(s[i] == ')' || s[i] == ']' || s[i] == '}'){
if((str[top] == '(' && s[i] == ')') || (str[top] == '[' && s[i] == ']') || (str[top] == '{' && s[i] == '}')){
top--;
}
else break;
}
}
if(top == 0 && i == len) cout << "yes" << endl;
else cout << "no" << endl;
return 0;
}
7-5 出栈序列的合法性
给定一个最大容量为 M 的堆栈,将 N 个数字按 1, 2, 3, ..., N 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 M=5、N=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。
输入格式:
输入第一行给出 3 个不超过 1000 的正整数:M(堆栈最大容量)、N(入栈元素个数)、K(待检查的出栈序列个数)。最后 K 行,每行给出 N 个数字的出栈序列。所有同行数字以空格间隔。
输出格式:
对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES
,否则输出NO
。
输入样例:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
输出样例:
YES
NO
NO
YES
NO
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 100;
int main()
{
int m, n, k;
int stackk[N];
int top = 0;
int inx1 = 1, inx2 = 1;
int b[N];
cin >> m >> n >> k;
while(k--){
int f = 1;
inx1 = 1, inx2 = 1;
top = 0;
for(int i = 1; i <= n; i++){
cin >> b[i];
}
while(1){// 这个的存在大概就是为了让后面的break起作用
if(inx1 == b[inx2]){// 元素进栈后立马出栈的情况
inx1++;
inx2++;
}
else if(top != 0 && stackk[top - 1] == b[inx2]){
top--;
inx2++;
}// 判断如果栈中有元素,然后栈顶元素也与此时的出栈序列元素相同,那么就继续出栈来判断
else{
if(inx1 > n) break;
stackk[top] = inx1;
top++;
inx1++;
if(top >= m){
f = 0;
break;
}
}
}
if(!f || top != 0) cout << "NO" << endl;
else cout << "YES" << endl;
}
return 0;
}
7-6 行编辑器
一个简单的行编辑程序的功能是:接受用户从终端输入的程序或数据,并存入用户的数据区。
由于用户在终端上进行输入时,不能保证不出差错,因此,若在编辑程序中,“每接受一个字符即存入用户数据区”的做法显然不是最恰当的。较好的做法是,设立一个输入缓冲区,用以接受用户输入的一行字符,然后逐行存入用户数据区。允许用户输入出差错,并在发现有误时可以及时更正。例如,当用户发现刚刚键入的一个字符是错的时,可补进一个退格符"#",以表示前一个字符无效;
如果发现当前键入的行内差错较多或难以补救,则可以键入一个退行符"@",以表示当前行中的字符均无效。
如果已经在行首继续输入'#'符号无效。
输入格式:
输入一个多行的字符序列。但行字符总数(包含退格符和退行符)不大于250。
输出格式:
按照上述说明得到的输出。
输入样例1:
在这里给出一组输入。例如:
whli##ilr#e(s#*s)
输出样例1:
在这里给出相应的输出。例如:
while(*s)
输入样例2:
在这里给出一组输入。例如:
outcha@putchar(*s=#++);
输出样例2:
在这里给出相应的输出。例如:
putchar(*s++);
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
const int N = 1e2 + 100;
int main()
{
int cnt = 0;
char str[N];
string s;
while(getline(cin, s)){
int i = 0;
for(i = 0; i < s.size(); i++){
if(s[i] == '#' && cnt == 0) continue;
else if(s[i] == '#') cnt--;
else if(s[i] == '@') cnt = 0;
else str[cnt++] = s[i];
}
for(int j = 0; j < cnt; j++){
cout << str[j];
}
}
return 0;
}
7-7 银行业务队列简单模拟
设某银行有A、B两个业务窗口,且处理业务的速度不一样,其中A窗口处理速度是B窗口的2倍 —— 即当A窗口每处理完2个顾客时,B窗口处理完1个顾客。给定到达银行的顾客序列,请按业务完成的顺序输出顾客序列。假定不考虑顾客先后到达的时间间隔,并且当不同窗口同时处理完2个顾客时,A窗口顾客优先输出。
输入格式:
输入为一行正整数,其中第1个数字N(≤1000)为顾客总数,后面跟着N位顾客的编号。编号为奇数的顾客需要到A窗口办理业务,为偶数的顾客则去B窗口。数字间以空格分隔。
输出格式:
按业务处理完成的顺序输出顾客的编号。数字间以空格分隔,但最后一个编号后不能有多余的空格。
输入样例:
8 2 1 3 9 4 11 13 15
输出样例:
1 3 2 9 11 4 13 15
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
queue<int>a, b;
int main()
{
int n, x;
cin >> n;
for(int i = 0; i < n; i++){
cin >> x;
if(x % 2 != 0) a.push(x);
else b.push(x);
}
int cnt = 0;
while(!a.empty() || !b.empty()){
if(!a.empty()){
if(cnt > 0) cout << " ";
cout << a.front();
a.pop();
cnt++;
}
if(!a.empty()){
if(cnt > 0) cout << " ";
cout << a.front();
a.pop();
cnt++;
}
// 因为A = 2B
if(!b.empty()){
if(cnt > 0) cout << " ";
cout << b.front();
b.pop();
cnt++;
}
}
return 0;
}
7-8 堆栈模拟队列
设已知有两个堆栈S1和S2,请用这两个堆栈模拟出一个队列Q。
所谓用堆栈模拟队列,实际上就是通过调用堆栈的下列操作函数:
int IsFull(Stack S)
:判断堆栈S
是否已满,返回1或0;int IsEmpty (Stack S )
:判断堆栈S
是否为空,返回1或0;void Push(Stack S, ElementType item )
:将元素item
压入堆栈S
;ElementType Pop(Stack S )
:删除并返回S
的栈顶元素。
实现队列的操作,即入队void AddQ(ElementType item)
和出队ElementType DeleteQ()
。
输入格式:
输入首先给出两个正整数N1
和N2
,表示堆栈S1
和S2
的最大容量。随后给出一系列的队列操作:A item
表示将item
入列(这里假设item
为整型数字);D
表示出队操作;T
表示输入结束。
输出格式:
对输入中的每个D
操作,输出相应出队的数字,或者错误信息ERROR:Empty
。如果入队操作无法执行,也需要输出ERROR:Full
。每个输出占1行。
输入样例:
3 2
A 1 A 2 A 3 A 4 A 5 D A 6 D A 7 D A 8 D D D D T
输出样例:
ERROR:Full
1
ERROR:Full
2
3
4
7
8
ERROR:Empty
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n1, n2;
char ch;
cin >> n1 >> n2;
if(n1 > n2) swap(n1, n2);
stack<int> s1, s2;
while(cin >> ch && ch != 'T'){
if(ch == 'A'){
int x;
cin >> x;
if(s1.size() < n1) s1.push(x);
else if(s2.empty()){
while(!s1.empty()){
s2.push(s1.top());
s1.pop();
}
s1.push(x);
}
else cout << "ERROR:Full\n";
}
else {
if(!s2.empty()){
cout << s2.top() << endl;
s2.pop();
}
else if(!s1.empty()){
while(!s1.empty()){
s2.push(s1.top());
s1.pop();
}
cout << s2.top() << endl;
s2.pop();
while(!s2.empty()){
s1.push(s2.top());
s2.pop();
}
}
else cout << "ERROR:Empty" << endl;
}
}
return 0;
}
/*
栈的特点:后进先出
队列的特点:先进先出
在两个栈之间来回倒腾,以模拟队列
*/
7-9 选数
已知n个整数x1,x2,x3...xi,以及1个整数k(k<n)。从 n 个整数中任选 k个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4个整数分别为3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22,
3+7+19=29,
7+12+19=38,
3+12+19=34,
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29
输入格式:
第一行两个空格隔开的整数 n,k(1≤n≤20,k<n)
第二行n个整数,两数之间空格隔开(1≤xi≤1000000)
输出格式:
输出一个整数,表示种类数。
输入样例:
在这里给出一组输入。例如:
4 3
3 7 12 19
输出样例:
在这里给出相应的输出。例如:
1
代码长度限制
16 KB
时间限制
1000 ms
内存限制
128 MB
#include<bits/stdc++.h>
using namespace std;
const int N = 25;
int a[N], n, k, cnt;
bool isPrime(int n)
{
for(int i = 2; i * i <= n; i++){
if(n % i == 0) return 0;
}
return 1;
}
void dfs(int m, int sum, int x)// x表示现在已经选取了几个数
{
if(m == k){
if(isPrime(sum))
cnt++;
return ;
}
for(int i = x; i < n; i++){
dfs(m + 1, sum + a[i], i + 1);
}
return ;
}
int main()
{
cin >> n >> k;
for(int i = 0; i < n; i++){
cin >> a[i];
}
dfs(0, 0, 0);
cout << cnt;
return 0;
}
7-10 全排列
Lc今天上课学会了数的全排列并且Lc觉得数的全排列很简单,但是直到Lc的同桌YooQ向他提出了一个问题,该问题的描述如下:我们知道n的全排列总共有n!个序列,例如2的全排列有两个序列{1,2}和{2,1},现在你要解决的问题是n的全排列的n!个序列中第m个序列是什么?(注意:n的全排列的n!个序列是按字典序由小到大排序的)
输入格式:
第一行为样例组数t(t≤1e5),接下来t行每行有一个整数n和m(1<=n<=20,1<=m<=n!)
输出格式:
输出t行,每行输出n的全排列的n!个序列中第m个序列,两相邻的数间有一空格,行末不得有多余空格。
输入样例:
在这里给出一组输入。例如:
2
1 1
3 6
输出样例:
在这里给出相应的输出。例如:
1
3 2 1
代码长度限制
16 KB
时间限制
1000 ms
内存限制
#include<bits/stdc++.h>
using namespace std;
const int N = 25;
int a[N];
int main()
{
int t, n, m;
cin >> t;
while(t--){
cin >> n >> m;
for(int i = 0; i < n; i++){
a[i] = i + 1;// !!!
}
if(m == 1){
for(int i = 0; i < n - 1; i++){
cout << a[i] << " ";
}
cout << a[n - 1] << endl;
}
else{
int cnt = 2;
while(next_permutation(a, a + n)){
if(cnt == m){
for(int i = 0; i < n - 1; i++){
cout << a[i] << " ";
}
cout << a[n - 1] << endl;
break;
}
cnt++;
}
}
}
return 0;
}
/*
将1~n存到一个数组里,聪明!!
*/
7-11 输出全排列
请编写程序输出前n个正整数的全排列(n<10),并通过9个测试用例(即n从1到9)观察n逐步增大时程序的运行时间。
输入格式:
输入给出正整数n(<10)。
输出格式:
输出1到n的全排列。每种排列占一行,数字间无空格。排列的输出顺序为字典序,即序列a1,a2,⋯,an排在序列b1,b2,⋯,bn之前,如果存在k使得a1=b1,⋯,ak=bk 并且 ak+1<bk+1。
输入样例:
3
输出样例:
123
132
213
231
312
321
代码长度限制
16 KB
时间限制
3500 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
int n, a[30];
bool st[30];
void dfs(int x){
if(x == n){
for(int i = 0; i < n; i++){
cout << a[i];
}
cout << endl;
return ;
}
for(int i = 1; i <= n; i++){
if(!st[i]){
a[x] = i;
st[i] = 1;
dfs(x + 1);
st[i] = 0;
}
}
return ;
}
int main()
{
cin >> n;
dfs(0);
return 0;
}