SDUT PTA 栈和队列

本文介绍了多个与进制转换和计算相关的编程问题,包括十进制到二进制、八进制、十六进制的转换,中缀表达式转后缀表达式,后缀表达式求值,括号匹配,堆栈模拟队列,全排列等。每个问题都提供了C++代码实现,展示了如何利用栈和队列等数据结构解决这些计算问题。
摘要由CSDN通过智能技术生成

7-1 进制转换

输入十进制整数N和待转换的进制x(2、8、16),分别代表十进制N转换成二进制、八进制和十六进制,输出对应的结果。十六进制中A~F用大写字母表示。

输入格式:

输入两个整数N(十进制整数N)和x(x进制),中间用空格隔开。

输出格式:

输出对应的结果。

输入样例:

在这里给出一组输入。例如:

123 2

输出样例:

在这里给出相应的输出。例如:

1111011

输入样例:

在这里给出一组输入。例如:

123 16

输出样例:

在这里给出相应的输出。例如:

7B

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;

typedef long long LL;
const int eps = 1e-8;// 一个极小值
const int N = 1e4 + 100;
const int M = 3e3 + 100;
const int INF = 0x3f3f3f3f;
const LL LINF = 0x3f3f3f3f3f3f3f3f;
#define PI acos(-1.0)
stack<char> s;// stl的容器
int main()
{
    int n, r;
    cin >> n >> r;
    if(n == 0) cout << "0" << endl;
    if(r == 16){
        while(n){
            int x = n % r;
            if(x < 10) s.push(x + '0');// 将int型转换为char型,使其能够存入char类型的栈中
            else s.push(x - 10 + 'A');
            n /= r;
        }
    }
    else{
        while(n){
            int x = n % r;
            s.push(x + '0');// 栈的特点:先进后出
            n /= r;
        }
    }
    while(!s.empty()){
        cout << s.top();// 栈顶是最后进栈的数
        s.pop();
    }
    return 0;
}

 **为了用stl容器偷懒我真的努力了23333

7-2 中缀表达式转换为后缀表达式 

所谓中缀表达式,指的是运算符处于操作数的中间(例:3 * ( 4 + 2 )),中缀表达式是人们常用的算术表示方法,但中缀表达式不容易被计算机解析,因为既要考虑运算符的优先级,还要考虑括号的处理。但中缀表达式仍被许多程序语言使用,因为它符合人们的普遍用法。后缀表达式,指的是不包含括号,运算符放在两个操作数的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则,也不需要考虑括号)。

给出一个中缀表达式,请将其转换为后缀表达式并输出。

输入格式:

只有一行,是一个长度不超过1000的字符串,表示一个中缀表达式。表达式里只包含+-*/与小括号这几种符号。其中小括号可以嵌套使用。运算符、操作数之间用一个空格分隔,数据保证输入的操作数中不会出现负数,保证除数不会为0。

输出格式:

输出对应的后缀表达式。运算符、操作数之间用一个空格分隔,但行尾无多余空格。

输入样例:

3 * ( 4 + 2 )

输出样例:

3 4 2 + *

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;

int main()
{
    string a;// 在c++里不能用gets了
    char s[20];
    getline(cin, a);
    int len = a.size(), f = 0, cnt = -1;
    for(int i = 0; i < len; i++){
        if(a[i] >= '0' && a[i] <= '9'){
            if(f) printf(" ");
            f = 1;
            while(a[i] >= '0' && a[i] <= '9'){
                printf("%c", a[i++]);// 遇到数字就输出
            }
            i--;// 返回去输出空格
        }
        else{
            if(a[i] == '(') s[++cnt] = a[i];// 遇左括号就“入栈”
            else if(a[i] == '*' || a[i] == '/'){
                while(s[cnt] == '*' || s[cnt] == '/' && cnt != -1){
                    printf(" %c", s[cnt--]);
                }
                s[++cnt] = a[i];
            }
            else if(a[i] == ')'){
                while(s[cnt] != '('){
                    printf(" %c", s[cnt--]);
                }// 不是左括号(可能是加or减)就输出
                cnt--;// 无论是否有输出都得出个栈~最后左括号会出栈
            }
            else if(a[i] == '+' || a[i] == '-'){
                while(s[cnt] != '(' && cnt != -1){
                    printf(" %c", s[cnt--]);
                }
                s[++cnt] = a[i];
            }
        }
    }
    while(cnt != -1){
        printf(" %c", s[cnt--]);
    }
    return 0;
}

**这个 只限一位数字。。 

7-3 后缀式求值

我们人类习惯于书写“中缀式”,如 3 + 5 * 2 ,其值为13。 (p.s. 为什么人类习惯中缀式呢?是因为中缀式比后缀式好用么?)

而计算机更加习惯“后缀式”(也叫“逆波兰式”,Reverse Polish Notation)。上述中缀式对应的后缀式是: 3 5 2 * +

现在,请对输入的后缀式进行求值。

输入格式:

在一行中输入一个后缀式,运算数运算符之间用空格分隔,运算数长度不超过6位,运算符仅有+ - * / 四种。

输出格式:

在一行中输出后缀式的值,保留一位小数。

输入样例:

3 5.4 2.2 * +

输出样例:

14.9

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;
int main()
{
    char str[10];
    double st[100];
    int top = 0;
    while(~scanf("%s", str)){// 这是一个字符一个字符输入的~
        if(str[1] == '\0' && (str[0] == '+' || str[0] == '-' || str[0] == '*' || str[0] == '/')){
            double num1 = st[--top];
            double num2 = st[--top];
            double res;
            switch(str[0]){
                case '+':
                    res = num2 + num1;
                    st[top++] = res;
                    break;
                case '-':
                    res = num2 - num1;
                    st[top++] = res;
                    break;
                case '*':
                    res = num2 * num1;
                    st[top++] = res;
                    break;
                case '/':
                    res = num2 / num1;
                    st[top++] = res;
                    break;
            }
        }
        else{
            double num;
            sscanf(str, "%lf", &num);// 从str中取出double类型的元素
            st[top++] = num;
        }
    }
    printf("%.1lf", st[0]);
    return 0;
}

**sscanf有好多用法

7-4 括号匹配

给定一串字符,不超过100个字符,可能包括括号、数字、字母、标点符号、空格,编程检查这一串字符中的( ) ,[ ],{ }是否匹配。

输入格式:

输入在一行中给出一行字符串,不超过100个字符,可能包括括号、数字、字母、标点符号、空格。

输出格式:

如果括号配对,输出yes,否则输出no。

输入样例1:

sin(10+20)

输出样例1:

yes

输入样例2:

{[}]

输出样例2:

no

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 100;
int main()
{
    string s;
    int top = 0;
    char str[N];
    getline(cin, s);
    int i = 0;
    int len = s.size();
    for(i = 0; i < len; i++){
        if(s[i] == '(' || s[i] == '[' || s[i] == '{'){
            str[++top] = s[i];
        }
        if(s[i] == ')' || s[i] == ']' || s[i] == '}'){
            if((str[top] == '(' && s[i] == ')') || (str[top] == '[' && s[i] == ']') || (str[top] == '{' && s[i] == '}')){
                top--;
            }
            else break;
        }
    }
    if(top == 0 && i == len) cout << "yes" << endl;
    else cout << "no" << endl;
    return 0;
}

7-5 出栈序列的合法性

给定一个最大容量为 M 的堆栈,将 N 个数字按 1, 2, 3, ..., N 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 M=5、N=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。

输入格式:

输入第一行给出 3 个不超过 1000 的正整数:M(堆栈最大容量)、N(入栈元素个数)、K(待检查的出栈序列个数)。最后 K 行,每行给出 N 个数字的出栈序列。所有同行数字以空格间隔。

输出格式:

对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES,否则输出NO

输入样例:

5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2

输出样例:

YES
NO
NO
YES
NO

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 100;

int main()
{
    int m, n, k;
    int stackk[N];
    int top = 0;
    int inx1 = 1, inx2 = 1;
    int b[N];
    cin >> m >> n >> k;
    while(k--){
        int f = 1;
        inx1 = 1, inx2 = 1;
        top = 0;
        for(int i = 1; i <= n; i++){
            cin >> b[i];
        }
        while(1){// 这个的存在大概就是为了让后面的break起作用
            if(inx1 == b[inx2]){// 元素进栈后立马出栈的情况
                inx1++;
                inx2++;
            }
            else if(top != 0 && stackk[top - 1] == b[inx2]){
                top--;
                inx2++;
            }// 判断如果栈中有元素,然后栈顶元素也与此时的出栈序列元素相同,那么就继续出栈来判断
            else{
                if(inx1 > n) break;
                stackk[top] = inx1;
                top++;
                inx1++;
                if(top >= m){
                    f = 0;
                    break;
                }
            }
        }
        if(!f || top != 0) cout << "NO" << endl;
        else cout << "YES" << endl;
    }
    return 0;
}

7-6 行编辑器

一个简单的行编辑程序的功能是:接受用户从终端输入的程序或数据,并存入用户的数据区。
由于用户在终端上进行输入时,不能保证不出差错,因此,若在编辑程序中,“每接受一个字符即存入用户数据区”的做法显然不是最恰当的。较好的做法是,设立一个输入缓冲区,用以接受用户输入的一行字符,然后逐行存入用户数据区。允许用户输入出差错,并在发现有误时可以及时更正。例如,当用户发现刚刚键入的一个字符是错的时,可补进一个退格符"#",以表示前一个字符无效;
如果发现当前键入的行内差错较多或难以补救,则可以键入一个退行符"@",以表示当前行中的字符均无效。
如果已经在行首继续输入'#'符号无效。

输入格式:

输入一个多行的字符序列。但行字符总数(包含退格符和退行符)不大于250。

输出格式:

按照上述说明得到的输出。

输入样例1:

在这里给出一组输入。例如:

whli##ilr#e(s#*s)

输出样例1:

在这里给出相应的输出。例如:

while(*s)

输入样例2:

在这里给出一组输入。例如:

outcha@putchar(*s=#++);

输出样例2:

在这里给出相应的输出。例如:

putchar(*s++);

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;
const int N = 1e2 + 100;
int main()
{
    int cnt = 0;
    char str[N];
    string s;
    while(getline(cin, s)){
        int i = 0;
        for(i = 0; i < s.size(); i++){
            if(s[i] == '#' && cnt == 0) continue;
            else if(s[i] == '#') cnt--;
            else if(s[i] == '@') cnt = 0;
            else str[cnt++] = s[i];
        }
        for(int j = 0; j < cnt; j++){
            cout << str[j];
        }
    }
    return 0;
}

7-7 银行业务队列简单模拟

设某银行有A、B两个业务窗口,且处理业务的速度不一样,其中A窗口处理速度是B窗口的2倍 —— 即当A窗口每处理完2个顾客时,B窗口处理完1个顾客。给定到达银行的顾客序列,请按业务完成的顺序输出顾客序列。假定不考虑顾客先后到达的时间间隔,并且当不同窗口同时处理完2个顾客时,A窗口顾客优先输出。

输入格式:

输入为一行正整数,其中第1个数字N(≤1000)为顾客总数,后面跟着N位顾客的编号。编号为奇数的顾客需要到A窗口办理业务,为偶数的顾客则去B窗口。数字间以空格分隔。

输出格式:

按业务处理完成的顺序输出顾客的编号。数字间以空格分隔,但最后一个编号后不能有多余的空格。

输入样例:

8 2 1 3 9 4 11 13 15

输出样例:

1 3 2 9 11 4 13 15

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;

queue<int>a, b;
int main()
{
    int n, x;
    cin >> n;
    for(int i = 0; i < n; i++){
        cin >> x;
        if(x % 2 != 0) a.push(x);
        else b.push(x);
    }
    int cnt = 0;
    while(!a.empty() || !b.empty()){
        if(!a.empty()){
            if(cnt > 0) cout << " ";
            cout << a.front();
            a.pop();
            cnt++;
        }
        if(!a.empty()){
            if(cnt > 0) cout << " ";
            cout << a.front();
            a.pop();
            cnt++;
        }
        // 因为A = 2B
        if(!b.empty()){
            if(cnt > 0) cout << " ";
            cout << b.front();
            b.pop();
            cnt++;
        }
    }
    return 0;
}

7-8 堆栈模拟队列

设已知有两个堆栈S1和S2,请用这两个堆栈模拟出一个队列Q。

所谓用堆栈模拟队列,实际上就是通过调用堆栈的下列操作函数:

  • int IsFull(Stack S):判断堆栈S是否已满,返回1或0;
  • int IsEmpty (Stack S ):判断堆栈S是否为空,返回1或0;
  • void Push(Stack S, ElementType item ):将元素item压入堆栈S
  • ElementType Pop(Stack S ):删除并返回S的栈顶元素。

实现队列的操作,即入队void AddQ(ElementType item)和出队ElementType DeleteQ()

输入格式:

输入首先给出两个正整数N1N2,表示堆栈S1S2的最大容量。随后给出一系列的队列操作:A item表示将item入列(这里假设item为整型数字);D表示出队操作;T表示输入结束。

输出格式:

对输入中的每个D操作,输出相应出队的数字,或者错误信息ERROR:Empty。如果入队操作无法执行,也需要输出ERROR:Full。每个输出占1行。

输入样例:

3 2
A 1 A 2 A 3 A 4 A 5 D A 6 D A 7 D A 8 D D D D T

输出样例:

ERROR:Full
1
ERROR:Full
2
3
4
7
8
ERROR:Empty

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;

int main()
{
    int n1, n2;
    char ch;
    cin >> n1 >> n2;
    if(n1 > n2) swap(n1, n2);
    stack<int> s1, s2;
    while(cin >> ch && ch != 'T'){
        if(ch == 'A'){
            int x;
            cin >> x;
            if(s1.size() < n1) s1.push(x);
            else if(s2.empty()){
                while(!s1.empty()){
                    s2.push(s1.top());
                    s1.pop();
                }
                s1.push(x);
            }
            else cout << "ERROR:Full\n";
        }
        else {
            if(!s2.empty()){
                cout << s2.top() << endl;
                s2.pop();
            }
            else if(!s1.empty()){
                while(!s1.empty()){
                    s2.push(s1.top());
                    s1.pop();
                }
                cout << s2.top() << endl;
                s2.pop();
                while(!s2.empty()){
                    s1.push(s2.top());
                    s2.pop();
                }
            }
            else cout << "ERROR:Empty" << endl;
        }
    }
    return 0;
}

/*
    栈的特点:后进先出
    队列的特点:先进先出
    在两个栈之间来回倒腾,以模拟队列
*/

7-9 选数

已知n个整数x1,x2,x3...xi,以及1个整数k(k<n)。从 n 个整数中任选 k个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4个整数分别为3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22,
3+7+19=29,
7+12+19=38,
3+12+19=34,

现在,要求你计算出和为素数共有多少种。

例如上例,只有一种的和为素数:3+7+19=29

输入格式:

第一行两个空格隔开的整数 n,k(1≤n≤20,k<n)
第二行n个整数,两数之间空格隔开(1≤xi≤1000000)

输出格式:

输出一个整数,表示种类数。

输入样例:

在这里给出一组输入。例如:

4 3
3 7 12 19

输出样例:

在这里给出相应的输出。例如:

1

代码长度限制

16 KB

时间限制

1000 ms

内存限制

128 MB

#include<bits/stdc++.h>
using namespace std;

const int N = 25;
int a[N], n, k, cnt;
bool isPrime(int n)
{
    for(int i = 2; i * i <= n; i++){
        if(n % i == 0) return 0;
    }
    return 1;
}
void dfs(int m, int sum, int x)// x表示现在已经选取了几个数
{
    if(m == k){
        if(isPrime(sum))
            cnt++;
        return ;
    }
    for(int i = x; i < n; i++){
        dfs(m + 1, sum + a[i], i + 1);
    }
    return ;
}
int main()
{
    cin >> n >> k;
    for(int i = 0; i < n; i++){
        cin >> a[i];
    }
    dfs(0, 0, 0);
    cout << cnt;
    return 0;
}

7-10 全排列

Lc今天上课学会了数的全排列并且Lc觉得数的全排列很简单,但是直到Lc的同桌YooQ向他提出了一个问题,该问题的描述如下:我们知道n的全排列总共有n!个序列,例如2的全排列有两个序列{1,2}和{2,1},现在你要解决的问题是n的全排列的n!个序列中第m个序列是什么?(注意:n的全排列的n!个序列是按字典序由小到大排序的)

输入格式:

第一行为样例组数t(t≤1e5),接下来t行每行有一个整数n和m(1<=n<=20,1<=m<=n!)

输出格式:

输出t行,每行输出n的全排列的n!个序列中第m个序列,两相邻的数间有一空格,行末不得有多余空格。

输入样例:

在这里给出一组输入。例如:

2
1 1
3 6

输出样例:

在这里给出相应的输出。例如:

1
3 2 1

代码长度限制

16 KB

时间限制

1000 ms

内存限制

#include<bits/stdc++.h>
using namespace std;

const int N = 25;
int a[N];
int main()
{
    int t, n, m;
    cin >> t;
    while(t--){
        cin >> n >> m;
        for(int i = 0; i < n; i++){
            a[i] = i + 1;// !!!
        }
        if(m == 1){
            for(int i = 0; i < n - 1; i++){
                cout << a[i] << " ";
            }
            cout << a[n - 1] << endl;
        }
        else{
            int cnt = 2;
            while(next_permutation(a, a + n)){
                if(cnt == m){
                    for(int i = 0; i < n - 1; i++){
                        cout << a[i] << " ";
                    }
                    cout << a[n - 1] << endl;
                    break;
                }
                cnt++;
            }
        }
    }
    return 0;
}

/*
    将1~n存到一个数组里,聪明!!
*/

7-11 输出全排列

请编写程序输出前n个正整数的全排列(n<10),并通过9个测试用例(即n从1到9)观察n逐步增大时程序的运行时间。

输入格式:

输入给出正整数n(<10)。

输出格式:

输出1到n的全排列。每种排列占一行,数字间无空格。排列的输出顺序为字典序,即序列a1​,a2​,⋯,an​排在序列b1​,b2​,⋯,bn​之前,如果存在k使得a1​=b1​,⋯,ak​=bk​ 并且 ak+1​<bk+1​。

输入样例:

3

输出样例:

123
132
213
231
312
321

代码长度限制

16 KB

时间限制

3500 ms

内存限制

64 MB

#include<bits/stdc++.h>
using namespace std;

int n, a[30];
bool st[30];
void dfs(int x){
    if(x == n){
        for(int i = 0; i < n; i++){
            cout << a[i];
        }
        cout << endl;
        return ;
    }
    for(int i = 1; i <= n; i++){
        if(!st[i]){
            a[x] = i;
            st[i] = 1;
            dfs(x + 1);
            st[i] = 0;
        }
    }
    return ;
}
int main()
{
    cin >> n;
    dfs(0);
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值