- 博客(58)
- 收藏
- 关注
原创 DAY 58 经典时序预测模型2
知识点回顾:1.时序建模的流程2.时序任务经典单变量数据集3.ARIMA(p,d,q)模型实战4.SARIMA摘要图的理解5.处理不平稳的2种差分a.n阶差分---处理趋势b.季节性差分---处理季节性
2025-08-27 23:02:50
1648
原创 DAY 57 经典时序预测模型1
知识点回顾1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR(p) 自回归模型:当前值受到过去p个值的影响b.MA(q) 移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q) 自回归滑动平均模型:同时存在自回归和冲击影响
2025-08-26 23:10:58
742
原创 DAY 56 时序数据的检验
知识点回顾:1.假设检验基础知识a.原假设与备择假设b.P值、统计量、显著水平、置信区间2.白噪声a.白噪声的定义b.自相关性检验:ACF检验和Ljung-Box 检验c.偏自相关性检验:PACF检验3.平稳性a.平稳性的定义b.单位根ADF检验: 越小越平稳4.季节性检验a.ACF检验b.序列分解:趋势+季节性+残差
2025-08-25 22:38:58
679
原创 DAY 55 序列预测任务介绍
知识点回顾1.序列预测介绍a.单步预测b.多步预测的2种方式2.序列数据的处理:滑动窗口3.多输入多输出任务的思路4.经典机器学习在序列任务上的劣势;以随机森林为例
2025-08-24 22:50:20
1627
原创 DAY 54 Inception网络及其思考
知识点回顾:1.传统计算机视觉发展史:LeNet-->AlexNet-->VGGNet-->nceptionNet-->ResNet2.inception模块和网络3.特征融合方法阶段性总结:逐元素相加、逐元素相乘、concat通道数增加等4.感受野与卷积核变体:深入理解不同模块和类的设计初衷
2025-08-23 23:02:41
803
原创 DAY 53 对抗生成网络
知识点回顾:1.对抗生成网络的思想:关注损失从何而来2.生成器、判别器3.nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法4.leakyReLU介绍:避免relu的神经元失活现象
2025-08-22 22:41:08
926
原创 DAY 50 预训练模型+CBAM模块
知识点回顾:1.resnet结构解析2.CBAM放置位置的思考3.针对预训练模型的训练策略a.差异化学习率b.三阶段微调
2025-08-19 23:10:58
755
原创 DAY 48 随机函数与广播机制
知识点回顾:1.随机张量的生成:torch.randn函数2.卷积和池化的计算公式(可以不掌握,会自动计算的)3.pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致
2025-08-17 23:25:19
687
原创 DAY 46 通道注意力(SE注意力)
知识点回顾:1.不同CNN层的特征图:不同通道的特征图2.什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。3.通道注意力:模型的定义和插入的位置4.通道注意力后的特征图和热力图
2025-08-15 22:45:39
681
原创 DAY 45 Tensorboard使用介绍
知识点回顾:1.tensorboard的发展历史和原理2.tensorboard的常见操作3.tensorboard在cifar上的实战:MLP和CNN模型
2025-08-14 23:39:48
620
原创 DAY 44 预训练模型
知识点回顾:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet18
2025-08-13 23:20:29
768
原创 DAY 43 复习日
模型定义(新增第4卷积块)# 卷积块1# 卷积块2# 卷积块3# 卷积块4self.conv4 = nn.Conv2d(128, 256, 3, padding=1) # 新增卷积块# 全连接层self.fc1 = nn.Linear(256 * 14 * 14, 512) # 计算方式:224->112->56->28->14(四次池化后尺寸)self.fc2 = nn.Linear(512, num_classes) # 输出5个类别。
2025-08-13 00:00:35
378
原创 DAY 42 Grad-CAM与Hook函数
知识点回顾1.回调函数2.lambda函数3.hook函数的模块钩子和张量钩子4.Grad-CAM的示例
2025-08-11 22:45:38
652
原创 DAY 41 简单CNN
知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率卷积操作常见流程如下:1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层2.Flatten -> Dense (with Dropout,可选) -> Dense (Output)
2025-08-10 23:13:52
721
2
原创 DAY 40 训练和测试的规范写法
知识点回顾:1.彩色和灰度图片测试和训练的规范写法:封装在函数中2.展平操作:除第一个维度batchsize外全部展平3.dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout
2025-08-09 21:10:01
952
原创 DAY 39 图像数据与显存
知识点回顾1.图像数据的格式:灰度和彩色数据2.模型的定义3.显存占用的4种地方a.模型参数+梯度参数b.优化器参数c.数据批量所占显存d.神经元输出中间状态4.batchisize和训练的关系
2025-08-08 23:20:14
1006
原创 DAY 38 Dataset和Dataloader类
知识点回顾:1.Dataset类的__getitem__和__len__方法(本质是python的特殊方法)2.Dataloader类3.minist手写数据集的了解
2025-08-07 23:24:12
683
原创 DAY 37 早停策略和模型权重的保存
知识点回顾:1.过拟合的判断:测试集和训练集同步打印指标2.模型的保存和加载a.仅保存权重b.保存权重和模型c.保存全部信息checkpoint,还包含训练状态3.早停策略
2025-08-06 22:50:56
683
原创 DAY 35 模型可视化与推理
知识点回顾:1.三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化2.进度条功能:手动和自动写法,让打印结果更加美观3.推理的写法:评估模式
2025-08-04 22:51:09
567
原创 DAY 34 GPU训练及类的call方法
知识点回归:1.CPU性能的查看:看架构代际、核心数、线程数2.GPU性能的查看:看显存、看级别、看架构代际3.GPU训练的方法:数据和模型移动到GPU device上4.类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)
2025-08-03 23:26:44
897
原创 DAY 33 MLP神经网络的训练
知识点回顾:1.PyTorch和cuda的安装2.查看显卡信息的命令行命令(cmd中使用)3.cuda的检查4.简单神经网络的流程a.数据预处理(归一化、转换成张量)b.模型的定义i.继承nn.Module类ii.定义每一个层iii.定义前向传播流程c.定义损失函数和优化器d.定义训练流程e.可视化loss过程
2025-08-02 19:30:59
702
原创 DAY 32 官方文档的阅读
知识点回顾:1.官方文档的检索方式:github和官网2.官方文档的阅读和使用:要求安装的包和文档为同一个版本3.类的关注点:a.实例化所需要的参数b.普通方法所需要的参数c.普通方法的返回值4.绘图的理解:对底层库的调用
2025-08-01 20:36:57
434
原创 DAY 30 模块和库的导入
知识点回顾:1.导入官方库的三种手段2.导入自定义库/模块的方式3.导入库/模块的核心逻辑:找到根目录(python解释器的目录和终端的目录不一致)
2025-07-30 23:37:05
952
原创 DAY 26 函数专题1:函数定义与参数
知识点回顾:1.函数的定义2.变量作用域:局部变量和全局变量3.函数的参数类型:位置参数、默认参数、不定参数4.传递参数的手段:关键词参数5.传递参数的顺序:同时出现三种参数类型时
2025-07-26 23:27:29
974
原创 DAY 25 异常处理
知识点回顾:1.异常处理机制2.debug过程中的各类报错3.try-except机制4.try-except-else-finally机制
2025-07-25 22:21:16
856
原创 DAY 20 奇异值SVD分解
知识点回顾:线性代数概念回顾奇异值推导奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k 越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD (或其变种如 FunkSVD, SVD++) 可以用来分解这个矩阵,发现潜在因子 (latent factors),从而预测
2025-07-20 23:29:16
328
原创 DAY 19 常见的特征筛选算法
知识点:1.方差筛选2.皮尔逊相关系数筛选3.lasso筛选4.树模型重要性5.shap重要性6.递归特征消除REF
2025-07-19 23:40:02
572
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人