目录
一、121. 买卖股票的最佳时机
1.题目描述
给定一个数组 prices
,它的第 i
个元素 prices[i]
表示一支给定股票第 i
天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0
。
示例 1:
输入:[7,1,5,3,6,4] 输出:5 解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
2.解题思路
- 明确一点:本题的这支股票,只能买入一次,和卖出一次
- 每天有两个状态,持有这支股票和不持有这支股票。因此我们需要一个二维数组,“第二维”用来表示这两种状态:这里用0来表示持有这支股票,1来表示不持有股票的状态
- 那么现在,可以明确dp数组含义了:dp[i][0]代表第i天持有这支股票所得最大现金,dp[i][1]表示第i天不持有这支股票的最大现金
- 递推公式:dp[i][0] 表示第i天持有这支股票,分别由以下两种状态
- 第i - 1天就持有了这支股票,因此此时dp[i][0] = dp[i - 1][0]
- 第i - 1天没有买,第i天刚买的,因此此时dp[i][0] = - price[i]
- 这时,取两者的最大值
- 递推公式:dp[i][1] 表示第i天不持有这支股票,分别由以下两种状态
- 第i - 1天就不持有了这支股票,因此此时dp[i][1] = dp[i - 1][1]
- 第i - 1天持有,第i天刚卖出的,因此此时dp[i][1] = dp[i - 1][0] + price[i]
- 这时,还是取两者的最大值
3.代码实现
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
if(len == 0) return 0 ;
vector<vector<int>> dp(len,vector<int>(2));
//初始化
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i = 1;i <len;i++){
dp[i][0] = max(dp[i-1][0],-prices[i]);
dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);
}
return dp[len - 1][1];
}
};
二、122. 买卖股票的最佳时机 II
1.题目描述
给你一个整数数组 prices
,其中 prices[i]
表示某支股票第 i
天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
输入:prices = [7,1,5,3,6,4] 输出:7 解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。 总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。 总利润为 4 。
示例 3:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。
2.解题思路
本题和上面那题的区别就是,这支股票可以买卖多次。代码上大同小异,在dp[i][0]时的判断需要更改一下,因为上一题股票只能买一次,如果买的话,那时候的现金一定是0。而本题是可以买卖多次,如果买的话,此时口袋里的现金是dp[i-1][1]。
3.代码实现
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
if(len == 0) return 0;
vector<vector<int>> dp(len,vector<int>(2));
//初始化
dp[0][0] = - prices[0];
dp[0][1] = 0;
for(int i = 1 ;i < len;i++){
dp[i][0] = max(dp[i-1][0],dp[i-1][1] - prices[i]);
dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);
}
return dp[len-1][1];
}
};
三、123. 买卖股票的最佳时机 III
1.题目描述
给定一个数组,它的第 i
个元素是一支给定的股票在第 i
天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。 随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入:prices = [1] 输出:0
2.解题思路
本题虽然LeetCode上显示是困难题,但是其实相比于上两题,就是多了几种状态。
3.代码实现
class Solution {
public:
int maxProfit(vector<int>& prices) {
//思路很重要,这里最多可以完成两笔交易
//因此每天对应着5种状态
//0.什么也不操作
//1.第一次持有
//2.第一次不持有
//3.第二次持有
//4.第二次不持有
int len = prices.size();
if(len == 0) return 0;
vector<vector<int>> dp(len,vector<int>(5));
//初始化
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
for(int i = 1;i < len;i++){
dp[i][0] = dp[i-1][0];
dp[i][1] = max(dp[i-1][1],dp[i-1][0] - prices[i]);
dp[i][2] = max(dp[i-1][2],dp[i-1][1] + prices[i]);
dp[i][3] = max(dp[i-1][3],dp[i-1][2] - prices[i]);
dp[i][4] = max(dp[i-1][4],dp[i-1][3] + prices[i]);
}
return max(dp[len-1][4],dp[len-1][2]);
}
};
四、188. 买卖股票的最佳时机 IV
1.题目描述
给你一个整数数组 prices
和一个整数 k
,其中 prices[i]
是某支给定的股票在第 i
天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k
笔交易。也就是说,你最多可以买 k
次,卖 k
次。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入:k = 2, prices = [3,2,6,5,0,3] 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。 随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
2.解题思路
- 这题也是困难题,但本质也就是多了很多种状态:第一次买入,第一次卖出,第二次买入,第二次卖出,第三次买入,第三次卖出.......
- 在上一题因为最多只有两次交易,直接四个四个递推公式敲出来就行
- 但是本题,最多有k次交易,就要借助for循环来递推这2*k种状态了
3.代码实现
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
//明确dp数组含义:第二维向量表示第j次买入卖出,所能获取的最大利润
int len = prices.size();
if(len == 0) return 0;
vector<vector<int>> dp(len,vector<int>(2*k+1));
//初始化:第0天,j为奇数的时候都买入,都是-prices[0]
for(int j = 1;j < 2*k;j+=2){
dp[0][j] = - prices[0];
}
//递推公式
for(int i = 1;i < prices.size();i++){
for(int j = 0;j < 2*k - 1;j+=2){
dp[i][j+1] = max(dp[i-1][j] - prices[i],dp[i-1][j+1]);
dp[i][j+2] = max(dp[i-1][j+2],dp[i-1][j+1] + prices[i]);
}
}
return dp[len-1][2*k];
}
};