目录
一、121. 买卖股票的最佳时机
1.题目描述
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
2.解题思路
- 明确一点:本题的这支股票,只能买入一次,和卖出一次
- 每天有两个状态,持有这支股票和不持有这支股票。因此我们需要一个二维数组,“第二维”用来表示这两种状态:这里用0来表示持有这支股票,1来表示不持有股票的状态
- 那么现在,可以明确dp数组含义了:dp[i][0]代表第i天持有这支股票所得最大现金,dp[i][1]表示第i天不持有这支股票的最大现金
- 递推公式:dp[i][0] 表示第i天持有这支股票,分别由以下两种状态
- 第i - 1天就持有了这支股票,因此此时dp[i][0] = dp[i - 1][0]
- 第i - 1天没有买,第i天刚买的,因此此时dp[i][0] = - price[i]
- 这时,取两者的最大值
- 递推公式:dp[i][1] 表示第i天不持有这支股票,分别由以下两种状态
- 第i - 1天就不持有了这支股票,因此此时dp[i][1] = dp[i - 1][1]
- 第i - 1天持有,第i天刚卖出的,因此此时dp[i][1] = dp[i - 1][0] + price[i]
- 这时,还是取两者的最大值
3.代码实现
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
if(len == 0) return 0 ;
vector<vector<int>> dp(len,vector<int>(2));
//初始化
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i = 1;i <len;i++){
dp[i][0] = max(dp[i-1][0],-prices[i]);
dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);
}

文章详细介绍了在不同情境下买卖股票的问题,包括单次交易、多次交易和最多k次交易的情况,通过动态规划求解最大利润,展示了逐步递推和代码实现的过程。
最低0.47元/天 解锁文章
276

被折叠的 条评论
为什么被折叠?



