- 博客(3)
- 收藏
- 关注
原创 基于Transformer实现机器翻译
Transformer模型是一种深度学习模型,由Vaswani等人在2017年提出,主要用于自然语言处理(NLP)任务。它的核心思想是通过自注意力(Self-Attention)机制来捕捉输入数据之间的全局依赖关系,从而能够处理序列数据。
2024-06-26 09:40:02 1720
原创 基于前馈神经网络处理姓氏分类问题
CNN,即卷积神经网络(Convolutional Neural Network),是一种常用于图像和视频处理的深度学习模型。与传统神经网络相比,CNN 有着更好的处理图像和序列数据的能力,因为它能够自动学习图像中的特征,并提取出最有用的信息。CNN 的一个核心特点是卷积操作,它可以在图像上进行滑动窗口的计算,通过滤波器(又称卷积核)和池化层(Max Pooling)来提取出图像的特征。卷积操作可以有效地减少权重数量,降低计算量,同时也能够保留图像的空间结构信息。
2024-06-12 16:52:47 1888
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人