题目描述
给你一个整数数组 nums。
返回两个(不一定不同的)质数在 nums 中 下标 的 最大距离。
示例 1:
输入: nums = [4,2,9,5,3]
输出: 3
解释: nums[1]、nums[3] 和 nums[4] 是质数。因此答案是 |4 - 1| = 3。
示例 2:
输入: nums = [4,8,2,8]
输出: 0
解释: nums[2] 是质数。因为只有一个质数,所以答案是 |2 - 2| = 0。
提示:
1 <= nums.length <= 3 * 105
1 <= nums[i] <= 100
输入保证 nums 中至少有一个质数。
解法1:
代码
class Solution {
public int maximumPrimeDifference(int[] nums) {
int first = 0; // 第一个质数的位置
int last = nums.length - 1; // 最后一个质数的位置
// 从前往后找到第一个质数
for (int i = 0; i < nums.length; i++) {
if (nums[i] != 1) {
int j = 2;
// 判断 nums[i] 是否为质数
for (; j <= Math.sqrt(nums[i]); j++) {
if (nums[i] % j == 0) {
break; // 如果能被 j 整除,则 nums[i] 不是质数
}
}
if (j > Math.sqrt(nums[i])) { // 如果 nums[i] 是质数
first = i;
break; // 找到第一个质数后退出循环
}
}
}
// 从后往前找到最后一个质数
for (int i = nums.length - 1; i >= 0; i--) {
if (nums[i] != 1) {
int j = 2;
// 判断 nums[i] 是否为质数
for (; j <= Math.sqrt(nums[i]); j++) {
if (nums[i] % j == 0) {
break; // 如果能被 j 整除,则 nums[i] 不是质数
}
}
if (j > Math.sqrt(nums[i])) { // 如果 nums[i] 是质数
last = i;
break; // 找到最后一个质数后退出循环
}
}
}
return last - first; // 返回最后一个质数和第一个质数之间的距离
}
}
思路
-
初始化:首先初始化两个变量 first 和 last 分别表示第一个质数和最后一个质数的位置。first 初始化为 0,last 初始化为数组的最后一个索引。
-
寻找第一个质数:
- 我们从数组的头开始遍历。
- 对于每个元素,如果它不是 1,我们检查它是否为质数。质数的定义是仅能被 1 和自身整除的数,因此我们从 2 到 sqrt(nums[i]) 检查是否存在除 1 和自身以外的因数。
- 如果找到一个质数,我们记录它的位置并退出循环。
- 寻找最后一个质数:
- 我们从数组的尾开始遍历。
- 和寻找第一个质数的过程类似,对于每个元素,我们检查它是否为质数。
- 如果找到一个质数,我们记录它的位置并退出循环。
- 计算结果:最后,我们返回最后一个质数的位置减去第一个质数的位置,即质数之间的最大距离。
复杂度分析
时间复杂度
-
寻找第一个质数:
外层循环遍历数组中的每一个元素,时间复杂度为 O(n),其中 n 是数组的长度。
内层循环检查每个元素是否为质数,时间复杂度为 O(√m),其中 m 是当前元素的值。
因此,寻找第一个质数的时间复杂度为 O(n * √m)。 -
寻找最后一个质数:
和寻找第一个质数的分析类似,这部分的时间复杂度也是 O(n * √m)。
-
综合来看,总的时间复杂度是这两部分的和,即 O(n * √m) + O(n * √m) = O(n * √m)。
空间复杂度
代码中只用了常量级别的额外空间来存储变量 first 和 last,以及一些循环控制变量。因此,空间复杂度为 O(1)。
复杂度总结
- 时间复杂度:O(n * √m)
- 空间复杂度:O(1)
解法二:
代码
class Solution {
public int maximumPrimeDifference(int[] nums) {
// 创建一个 HashSet 存储小于 100 的所有质数
Set<Integer> primes = new HashSet<>(Arrays.asList(
2, 3, 5, 7, 11,
13, 17, 19, 23, 29,
31, 37, 41, 43, 47,
53, 59, 61, 67, 71,
73, 79, 83, 89, 97
));
int n = nums.length; // 获取数组长度
int first = -1, ans = 0; // 初始化第一个质数的位置为 -1,最大差值为 0
for (int i = 0; i < n; i++) { // 遍历数组
if (primes.contains(nums[i])) { // 检查当前元素是否为质数
if (first != -1) { // 如果已经找到过第一个质数
ans = Math.max(ans, i - first); // 更新最大差值
} else {
first = i; // 记录第一个质数的位置
}
}
}
return ans; // 返回最大差值
}
}
思路
-
存储质数:
使用一个 HashSet 来存储所有小于 100 的质数。因为质数的数量有限,使用 HashSet 可以在常数时间内检查一个数是否为质数。 -
遍历数组:
初始化数组长度 n 和两个变量 first 和 ans。first 用来记录第一个质数的位置,初始化为 -1,表示还没有找到第一个质数。ans 用来记录最大差值,初始化为 0。
遍历数组 nums,对于每一个元素,检查它是否在质数集合 primes 中。
如果当前元素是质数:
如果 first 已经不为 -1,说明之前已经找到过第一个质数,这时计算当前质数和第一个质数之间的距离,并更新 ans 为这两个质数位置差值的最大值。
如果 first 仍然为 -1,说明这是遇到的第一个质数,记录它的位置到 first。 -
返回结果:
遍历完成后,返回 ans,即质数之间的最大距离。
复杂度分析
时间复杂度为 O(n),因为我们只需要遍历一次数组。
空间复杂度为 O(1),因为质数集合的大小是固定的,不会随着输入规模增加。