【笔试强训】day10

1.最长回文子串

思路:

常规思路就是dp。dp[i][j]表示字符串i-j是否是回文子串。

如果A[i]==A[j],考虑以下几种情况:

长度小于3,说明一定是回文。

要想让dp[i][j]为真,则dp[i+1][j-1]必须也为真。否则就是false.即dp[i][j]=dp[i+1][j-1]

顺便用一个ans维护一下答案就好了

这种做法的复杂度是N^2.还有一种叫马拉夫的做法,On的复杂度,但是我忘了,草。

代码:

#define _CRT_SECURE_NO_WARNINGS 1
class Solution {
public:

    int getLongestPalindrome(string A) {
        int n = A.size();
        vector<vector<bool>> dp(n + 1, vector<bool>(n + 1));
        if (A.size() == 1)return 1;

        for (int i = 1; i <= n; i++) {
            dp[i][i] = true;
        }
        int ans = 1;
        for (int len = 1; len <= n; len++) {
            for (int l = 1; l + len - 1 <= n; l++) {
                int r = l + len - 1;
                if (len == 1)continue;
                if (A[l - 1] != A[r - 1]) {
                    dp[l][r] = false;
                }
                else {
                    if (len <= 3)dp[l][r] = true;
                    else dp[l][r] = dp[l + 1][r - 1];
                }

                if (dp[l][r])ans = max(ans, r - l + 1);
            }
        }
        return ans;

    }
};

2.买股票的最佳时机(一)

思路:

暴力枚举。假设我们在第i天买入,那么在什么时候卖掉最合适呢?在第i天之后哪一天的票价最高我们就在哪一天卖掉。所以我们可以再用一个数组s[],s[i]表示i-n天的最高票价

代码:

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
const int N = 1e5 + 10;
int a[N];
int s[N];
int main() {
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
    }
    s[n] = a[n];
    for (int i = n - 1; i >= 1; i--) {
        s[i] = max(s[i + 1], a[i]);
    }

    int ans = 0;
    for (int i = 1; i < n; i++) {
        ans = max(ans, s[i + 1] - a[i]);
    }
    cout << ans;

    return 0;
}

3.过河卒

思路:

一眼看上去dfs,做了一遍直接超时了(优化一下应该就能过)。后来换了种思路,借用类似杨辉三角的做法。

dp[i][j]表示,从起点到(i,j)的路径有多少。如果没有马的干扰,那么dp[i][j]=dp[i-1][j]+dp[i][j-1]

首先如果i,j本身就是马的范围,那么直接滚,表示走到这个点的路径数0。

换而言之,就是遇到马步直接跳过。

代码:


#include <iostream>
#include<queue>
#include<algorithm>
using namespace std;
const int N = 50;
long long f[N][N];
bool st[N][N];
int n, m, x, y;
int dx[] = { 0, -2, -1, 1, 2, 2, 1, -1, -2 };
int dy[] = { 0, 1, 2, 2, 1, -1, -2, -2, -1 };

bool check(int a, int b) {
    if (x == a && y == b)return false;
    if (abs(a - x) + abs(b - y) == 3) {
        return false;
    }
    // cout<<abs(a - x) + abs(b - y) <<"--"<<endl;
    return true;
}
int main() {
    int n, m, x, y;
    cin >> n >> m >> x >> y;
    if (n == x && m == y) {
        cout << 0 << endl;
        return 0;
    }

    for (int i = 0; i < 9; i++) {
        int a = x + dx[i];
        int b = y + dy[i];
        if (a >= 0 && a <= n && b >= 0 && b <= m)st[a][b] = true;
    }
    for (int i = 1; i <= m; i++) {
        if (st[0][i]) {
            break;
        }
        f[0][i] = 1;
        //cout<<i<<" ";
    }
    for (int i = 1; i <= n; i++) {
        if (st[i][0]) {
            break;
        }
        f[i][0] = 1;
        //cout<<i<<" ";
    }
    f[0][0] = 1;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            if (st[i][j])continue;
            if (!st[i - 1][j])f[i][j] += f[i - 1][j];
            if (!st[i][j - 1])f[i][j] += f[i][j - 1];
            //  cout<<f[i][j]<<" ";
        }
        //cout<<endl;
    }

    cout << f[n][m] << endl;
    return 0;
}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值