- 博客(27)
- 收藏
- 关注
原创 linux应用编程部分
mode:此参数用于指定新建文件的访问权限,只有当 flags 参数中包含 O_CREAT 或 O_TMPFILE 标志时才有效。与linux下的chmod命令类似。flags:调用 open 函数时需要提供的标志,常用标志介绍如下:结合着 |可以联合使用。O_NOFOLLOW里面的符合链接是指的linux命令下的link命令链接的软链接。
2026-02-08 18:13:36
124
原创 linux基本内容
在 Linux 系统中,命令行操作是管理和控制系统的核心。掌握一些常用命令将大大提高你的工作效率。本篇博客将总结一些常见的 Linux 命令,并对每个命令的常用参数做详细说明。
2026-01-30 09:33:50
362
原创 图像去雾AECRNet
特性普通卷积DCNv2采样位置固定动态,可偏移卷积核权重固定共享固定共享调制权重无可选,动态调整每个采样点贡献灵活性较低高,适合处理几何变形、非刚性目标核心结论普通卷积:采样位置固定,权重共享DCNv2对每个输出像素采样位置是动态的,卷积核权重是共享的,但可以通过调制系数动态调整每个采样点的贡献。
2025-11-20 21:44:52
260
原创 c/c++的一些基本内容
结构体定义由关键字struct和结构体名组成,结构体名可以根据需要自行定义。...tag是结构体标签。是标准的变量定义,比如 int i;或者 float f;,或者其他有效的变量定义。结构变量,定义在结构的末尾,最后一个分号之前,您可以指定一个或多个结构变量。在一般情况下,这 3 部分至少要出现 2 个。//此声明声明了拥有3个成员的结构体,分别为整型的a,字符型的b和双精度的c//同时又声明了结构体变量s1//这个结构体并没有标明其标签structint a;char b;
2025-11-13 18:56:13
964
原创 CNN下采样与特征理解学习笔记
概念含义卷积提取局部特征下采样缩小图像,扩大感受野通道表示不同类型的特征检测器特征向量区域的高维语义描述✅ 每层卷积的像素不再是亮度,而是“语义向量”;✅ 随着层数加深,模型从“看到颜色” → “理解结构” → “识别概念”。
2025-11-01 18:23:06
361
原创 Zero-DCE和Zero-DCE++无参考低光照图像增强
Zero-DCE 通过无参考深度曲线估计实现低光图像增强:无需参考图像,仅依赖输入图像网络轻量,卷积 + 跳跃连接设计多种损失函数保证:空间一致性曝光合理性颜色恒定性光照平滑性增强后的图像在亮度、细节和色彩上都更加自然,适合夜景、低光环境下图像增强。KYIMYN。
2025-10-29 21:41:11
1300
原创 模型转换:目的得到om模型
这里先谈下个人的感受,目前网上对这部分的介绍还是很少,我在将ckpt转换为onnx再转换为om的过程中,一直卡在利用atc工具将onnx转换为om的过程中一直报错,经过查找资料和ai有说是硬件问题,我升级了下cann发现还是同样的错误,最后我突发奇想:觉得是不是ckpt转换为onnx这一步是在windows下转换的,windows和ubuntu对于某些算子的支持不同,然后就将ckpt转换为onnx这一步放在ubuntu下操作,结果onnx转换为om一下就成功了。:指定模型输入张量的精确形状。
2025-10-28 15:32:48
423
原创 SphereFace
阶段操作算法/方法训练提取特征 + A-Softmax 分类识别特征向量比对损失函数是,本质上是带角度 margin 的 Softmax + CrossEntropy五。
2025-10-14 19:17:46
764
原创 Deepsort多目标跟踪算法
DeepSORT算法依赖于目标检测器来确定视频中每一帧的目标位置。检测器的输出通常包括目标的边界框(bounding box)和类别。:DeepSORT中的级联匹配是一种特殊的机制,它首先尝试将检测结果与高置信度的轨迹进行匹配,然后再与低置信度的轨迹进行匹配。:DeepSORT维护每个目标的轨迹,并对新检测到的目标初始化新的轨迹。这些特征对于目标的再识别(re-identification,简称Re-ID)至关重要,因为即使目标在视频中被临时遮挡或丢失,这些特征也能帮助算法重新识别和关联目标。
2025-10-11 11:55:18
255
原创 用数据挖掘思维提升视觉任务(和深度学习结合)
SwAV 就像一个“图像特征提取器”,不用标签也能训练好,训练好后,你可以把它拿来做聚类、分类或者找相似图像。
2025-10-07 18:12:45
706
原创 图像处理
半径计算权重参数矩阵指的是:在图像处理中,根据一个给定的半径(Radius)值,来计算一个核(Kernel),这个核本身就是一个包含了所有权重参数的矩阵,用于后续的滤波操作。它是一个矩阵,矩阵中的每一个值代表一个权重。•局部自适应:不同于全局拉伸或直方图均衡化,ACE能根据图像不同区域的特性进行自适应增强,效果通常更自然。•数学关系:核的尺寸,通常与半径 r的关系是:size = 2 * r + 1。·在图像处理中,半径定义了核的大小以及模糊的程度。•半径越大,参与的像素范围越广,模糊效果越强烈。
2025-09-20 11:43:41
435
原创 香橙派推理yolo11s.om(目标检测)
香橙派 AI Pro)-->算力高适用于需要更高AI算力的边缘计算场景香橙派 5 Ultra、香橙派 5B、香橙派 CM5 )适用于嵌入式设备和视频处理场景。
2025-09-16 20:43:42
374
原创 (YOLO)Ultralytics Solutions
利用Ultralytics 下的Solutions模块可以实现物体计数,安全报警系统,速度估算,区域检测等功能具体细节可查看下面地址。
2025-09-12 19:02:33
281
原创 如何自定义数据集和标签(labelme)
在终端调用labelme打开可视化界面打开目录(images\train)并点击自动保存。1.3标注完图片后将生成的json通过下面代码修改为txt文件(只需修改少量代码即可)并将训练图片放到images\train目录下。最后配置mydata.yaml文件即可。在虚拟环境下安装labelme。
2025-09-09 16:58:50
273
原创 yolov8环境配置适配2025年九月份GitHub源码目录
下载好解压之后用pycharm进行打开D:\yolov8\ultralytics-main\ultralytics-main\ultralytics,将项目环境切换为新创建的虚拟环境yolov8。卸载一下pip uninstall ultralytics,在重新安装一下pip install ultralytics即可。先用conda prompt创建一个虚拟环境,我的叫yolov8, python版本用3.9。可以看到已经完成了目标框和类别概率的显示和绘制。把权重文件放在根目录处。1.2.1 下载源码。
2025-09-09 11:19:43
1048
利用retinaface人脸检测和sphereface人脸识别训练好的模型在香橙派上进行联合推理
2025-10-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅