费马小定理

费马小定理内容:


如果p是一个质数,而整数a不是p的倍数(a,b互质),则有a^(p-1)≡1(mod p)


  • 费马定理求模P的逆元

逆元补充:

若整数 b,m 互质,并且对于任意的整数 a,如果满足 b|a,则存在一个整数 x,使得 a/b≡a×x(modm),则称 x 为 b 的模 m 乘法逆元,记为 b^-1(modm)。
b 存在乘法逆元的充要条件是 b 与模数 m 互质。当模数 m 为质数时,bm−2 即为 b 的乘法逆元。
通俗的话就是除法中的除数可以用乘以这个除数的倒数来表示(当然不是这么简单(^ V ^)

证明:

由费马定理有:a^(p-1) %p == 1%p
左边乘a除a : (a^(p-2)*a) %p == 1%p
所以 a^(p-2)就相当于a ^-1

前提:所求模P条件下b的逆元中的b要于p互质,也就是gcd(P,b)==1
acwing876.快速幂求逆元

题目描述:

给定n组整数a,p其中p是质数,求a模p的乘法逆元,若不存在输出impossible
1≤n≤105 ,
1≤ai,pi≤2∗109


#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
int n,a,p;
int qmi(ll m,ll n)//快速幂求b^p-2
{
    ll res=1;
    while(n)
    {
        if(n&1) res=res*m%p;
        
        m=m*m%p;
        n>>=1;
    }
    return res;
}
int main()
{
    cin>>n;
    while(n--)
    {
        cin>>a>>p;
        if(a%p==0)//因为p是质数所以只需要判断a是不是它的倍数
        {
            puts("impossible");
        }
        else
        {
            int res=qmi(a,p-2);
            cout<<res<<endl;
        }
    }
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向夕阳Salute

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值