问题描述:在半张中国象棋的棋盘上,一只马从左下角跳到右上角,只允许往右边跳,问能有多少种方案
算法思路:1.棋盘的边界m,n一定要设置,作为边界量用于判断递归结束的条件
2.很显然如图跳'日'形有如图一下四种跳法;(但是注意边界条件,及每次开始的坐标不能小于0,因为从左下方开始不能超出棋盘之外,详情请见代码)
3.跳马可以用for循环坐标同时变化:如下图
i | dx[i] | dy[i] |
0 | 1 | 2 |
1 | 1 | -2 |
2 | 2 | 1 |
3 | 2 | -1 |
示例代码:
#include <iostream>
using namespace std;
int dx[]={1,1,2,2};
int dy[]={2,-2,1,-1};
int ans=0; //跳到m,n的总方法数
int m,n; //表示边界
void dfs(int x,int y){//每次开始的边界x,y
if(x==m && y==n){ //判断结束条件 正好开始的边界在m,n目标点上
ans++; //方案数加1
return; //回溯
}
else{
for(int i=0;i<4;i++){ // 四种情况用数组表示
int a=x+dx[i]; //重新设置跳一次的坐标a和b
int b=y+dy[i];
if(a>m || b>n ||a<0 ||b<0) //判断跳一次的坐标不能超出棋盘即<0 也不可跳出边界
continue; //若"或运算"有一个不满足 就跳出本次for循环 执行下一个for循环的判定
dfs(a,b); //继续递归
}
}
}
int main(){
cout<<"请输入棋盘的界限:"<<endl;
cin>>m>>n;
dfs(0,0);
cout<<"总路径有:"<<ans<<endl;
return 0;
}