动态规划算法

动态规划

动态规划题的特点

最明显的特点:求最优解
动态规划题一般只需要求步数之类的,不需要求具体方案(如果需要具体方案还是要用BFS或者递归来做)

动态规划一般都可分解为子问题
动态规划需要无后效性,即后面的结果可以利用前面的结果,但是不会改变前面的结果

动态规划一般步骤

1.确定状态

主要是思考最后一步,然后将最后一步去掉就转换成立规模更小的的n-1步的子问题

状态也可认为是某个情况下的最优。例如背包问题:dp[i][j]可认为是有 i 件物品 背包容量还剩 j 时的最优。

2.确定转移方程

就是将第n步与n-1步等前面的几步建立联系,得一个推导公式,也就是转移公式,确定需要的储存数组

存储数组就是用来存储前面的状态。

3.考虑初始条件和边界情况

一般的初始条件都是dp[0]=0dp[0][0]=0,具体分析
边界情况主要就是考虑数组是否会越界,什么时候停止循环,将不可能的状态设置成了无穷大,要避免计算超过范围也需要避免

4.明白计算顺序

一般的计算顺序就是从左到右计算即从1开始来计算到n,因为第n步需要第1步的状态

例题1:
爬楼梯问题
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶

示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶

数据范围:1 <= n <= 45

思路
很容易想到状态就是到达第 i 个楼梯的走法数量

这个时候到达第 i 个楼梯有几种可能?

  • 两种
    • 从上一级台阶,走一步;
    • 从上上级台阶走两步

那么走到当前台阶有多少种走法?
dp[i] = dp[i-1] + dp[i-2]

那么状态和状态转移方程就确定了!

代码展示:

#include <bits/stdc++.h>

using namespace std;

const int N = 50;
int n, dp[N];

int main() {
    cin >> n;
    dp[0] = 1, dp[1] = 1;
    for (int i = 2; i <= n; ++i) {
        dp[i] = dp[i-1] + dp[i-2];
    }
    cout << dp[n] << endl;
}

也可以使用递归

#include <bits/stdc++.h>

using namespace std;

int n;
int df(int n){
	if(n==0||n==1)
		return 1;
	else
		return df(n-1)+df(n-2);
}
int main() {
    cin >> n;
    int ans=df(n);
    cout << ans << endl;
}

java代码如下:

import java.util.Scanner;

public class Solve {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int[] dp = new int[n + 1];

        dp[0] = 1;
        dp[1] = 1;

        for (int i = 2; i <= n; ++i) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }

        System.out.println(dp[n]);
    }
}

硬币问题

给定一个数组,表示硬币的面值,比如数组A = {2,5,7},表示有2元面值的硬币,5元面值的硬币,7元面值的硬币;然后给定一个价格例如27。要求计算用最少数量的硬币得到面值之和为27的组合,只需要得到硬币个数。

1.问题分析

问题要求求最少硬币的个数,但是没有要求求具体是那几个硬币,而且看到最少,一般就可以用动态规划来解题

2.确定状态

这道题的状态就是面值为M-A[j]的结果,也就是最后一步呀让n-1步加上一个面值等于27,之后看子问题就是求n-1步的最少硬币数,就和求n步的问题一样了

3.转移方程

以示例数据为例,用一个数组f[]来储存面值为i时的最少硬币数量,即可以推到出转移公式为:
考虑初始条件和边界情况
这道题的初始条件应该时f[0] = 0,然后从f[1]开始计算
边界情况应该考虑M-A[j]会不会小于零导致数组下标越界的问题,并且这道题会在如果f[i-A[j]]没有解的情况下设置为最大数,所以要判断f[i-A[j]]是否为最大数,是也不能有其计算
计算顺序
就先计算面值为1,2,3……M就好
具体代码实现

package Java.algorithm_study;

import java.util.Scanner;

class Coinnum {
    public static void main(String[] args) {
        int[] A = { 2, 5, 7 };
        Scanner scanner = new Scanner(System.in);
        int M = scanner.nextInt();

        //声明一个储存数组,用来记录不同状态的结果
        int[] F = new int[M + 1];
        //确定成员数组大小
        int n = A.length;

        //初始条件
        F[0] = 0;

        for (int i = 1; i <= M; i++) {//拼成银币为i元
            F[i] = Integer.MAX_VALUE;//先让i为无穷大
            for (int j = 0; j < n; j++) {
                if (i >= A[j] && F[i - A[j]] != Integer.MAX_VALUE) {
                    F[i] = Math.min(F[i],F[i-A[j]]+1);
                }
            }
        }

        if(F[M] == Integer.MAX_VALUE){
            System.out.println(-1);
        }
        else {
            System.out.println(F[M]);
        }
        
        scanner.close();
    }
}

机器人走方格
让机器人从矩阵方格的第一个位置开始出发,走到矩阵方格的右下角位置,矩阵方格为m*n,要求求从左上角走到右下角有多少种走法(只能向下移动或向右移动)

题目链接:
机器人走方格

问题分析

1.确定状态

最后一步是走到(m-1,n-1)的位置,走到这个格子有两种可能即从(m-2,n-1)走过来,或者从(m-1,n-2)走过来,那么计算的子问题就是要求走到(m-2,n-1)和(m-1,n-2)的走法
因为右两个状态,所以需要一个二维的数组用来储存状态

2.转移方程

因为(m-1)(n-1)的可以从(m-2,n-1)和(m-1,n-2)两个位置走来,那么就是(m-2,n-1)和(m-1,n-2)的走法之和就可以得到转移方程为:f[i][j]= f[i-1][j]+ f[i][j-1]

3.初始条件和边界情况

初始条件应该是f[0][0]=1
边界情况是i = 0时走法为1,因为只能一直向右走才能走到(不能向上走)
同样j = 0时的一列的走法也为1
即:f[0][j]= f[i][0]=0
为了简化时间,直接在循环中初始化

4.计算顺序

从左到右求出一行后再求下一行,这样f[i-1][j]的上一行已经求过了,即可以直接用了,在这一步的前面一步也已经求了f[i][j-1]了,转移方程需要的条件就都有了。

java具体代码实现

package com.wang.web.config;
import java.util.Scanner;

public class Solve {

    public static void main(String[] args) {
    
        Scanner sc=new Scanner(System.in);
        int m = sc.nextInt();
        int n = sc.nextInt();
        //创建储存矩阵
        int[][] f = new int[m][n];
        //使用转移方程求解
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                //初始化边界情况
                if (i == 0 || j == 0) {
                    f[i][j] = 1;
                } else {
                    f[i][j] = f[i - 1][j] + f[i][j - 1];
                }
            }
        }
        System.out.println(f[m - 1][n - 1]);
    }
}

c++代码:

#include <bits/stdc++.h>
using namespace std;

int main() {
    int m , n ; // 题目条件,假设是 3*7 的矩阵
	cin>>m>>n; 
    // 创建储存矩阵
    int** f = new int*[m];
    for (int i = 0; i < m; ++i) {
        f[i] = new int[n];
    }

    // 使用转移方程求解
    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j) {
            // 初始化边界情况
            if (i == 0 || j == 0) {
                f[i][j] = 1;
            } else {
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            }
        }
    }

    // 输出结果
    cout << f[m - 1][n - 1] << endl;
    return 0;
}

原文地址:http://yongruizhang.cn/posts/3405577485.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值