Igor is in 11th grade. Tomorrow he will have to write an informatics test by the strictest teacher in the school, Pavel Denisovich.
Igor knows how the test will be conducted: first of all, the teacher will give each student two positive integers aa and bb (a < ba<b). After that, the student can apply any of the following operations any number of times:
- a := a + 1
- b := b + 1
- a:=a ∣ b (replace a with the bitwise OR of a and b).
To get full marks on the test, the student has to tell the teacher the minimum required number of operations to make aa and bb equal.
Igor already knows which numbers the teacher will give him. Help him figure out what is the minimum number of operations needed to make aa equal to bb.
Input
Each test contains multiple test cases. The first line contains the number of test cases tt (1 \le t \le 10^41≤t≤104). Description of the test cases follows.
The only line for each test case contains two integers aa and bb (1 \le a < b \le 10^61≤a<b≤106).
It is guaranteed that the sum of bb over all test cases does not exceed 10^6106.
Output
For each test case print one integer — the minimum required number of operations to make aa and bb equal.
Sample 1
Inputcopy Outputcopy 5 1 3 5 8 2 5 3 19 56678 164422 1 3 2 1 23329Note
In the first test case, it is optimal to apply the third operation.
In the second test case, it is optimal to apply the first operation three times.
In the third test case, it is optimal to apply the second operation and then the third operation.
题意: 三种处理方式,求最小步数使得a=b。
思路:已知a|b>=max(a,b)。我们有三种方式完成。a=a+1一直加到b;a一直加直到a|b=b;b一直加直到a|(b+i)=b+i。我们都跑一遍,找最少的就行了。注意,a|b=b时我们跑出循环,所以需要再加一。