ML
文章平均质量分 59
golemon.
这个作者很懒,什么都没留下…
展开
-
anacoda常用指令教程
创建一个python版本为beta的虚拟环境名为env_name的虚拟环境。原创 2023-11-08 12:24:34 · 106 阅读 · 0 评论 -
安装anaconda
打开“系统属性-高级-环境变量-user的用户变量-选择Path-编辑”在变量值后面依次添加之前要求记住的自己的安装路径(例如我的)点击Next,到用户设置时,建议All。以上就将anaconda配置好了。即编辑Path的环境变量。安装好后进行环境配置。设置好存储文件位置。原创 2023-11-08 12:24:01 · 55 阅读 · 0 评论 -
UNet网络模型学习总结
数据集自行下载:https://host.robots.ox.ac.uk/pascal/VOC/voc2007/因为VOC数据集太大,上传github很慢,所以就没有上传VOC数据,只有参考的目录位置。原创 2023-09-25 14:45:37 · 218 阅读 · 0 评论 -
UNet网络测试
用于测试UNet网络训练的。对输入的图像进行分割,并将分割结果保存为图像文件。原创 2023-09-25 13:47:38 · 242 阅读 · 0 评论 -
UNet网络训练
构建好UNet网络模型后,需要进行训练。但是训练需要特别多的原始图像和标签图像,对于一般而言这一步特别繁琐,不过在网上有一些免费的数据集可以让我们省略这一步,直接进行训练测试。VOC(Visual Object Classes)数据集是一个广泛使用的计算机视觉数据集,主要用于目标检测、图像分割和图像分类等任务。VOC数据集最初由英国牛津大学的计算机视觉小组创建,并在PASCAL VOC挑战赛中使用。原创 2023-09-25 13:24:17 · 835 阅读 · 3 评论 -
UNet网络制作
代码参考,根据该UP主的代码,加上我的个人整理和理解。(这个UP主的代码感觉很好,很规范UNet网络由三部分组成:卷积块,下采样层,上采样层。原创 2023-09-25 10:43:26 · 348 阅读 · 0 评论 -
UNet网络模型:数据集制作
标记图片。JPEGImages:原始图片。数据集往往都是很多的图片等信息,对于数据集类来说,一个类里有所有数据的信息,并且可以用下标进行访问,就像访问数组一样。在pytorch中有Dataset类,用于创建自定义数据集类。我们可以用继承Dataset类来实现数据集类。在一个数据集类中,需要确定数据集所在的位置,也要用实现下标访问,用__len__实现数据集大小。对于标记图片和原始图片可能大小或者格式不同,需要将这两个图片的格式统一。代码参考,根据该UP主的代码,加上我的个人整理和理解。原创 2023-09-25 00:24:19 · 1540 阅读 · 4 评论 -
UNet简单介绍
语义分割(Semantic Segmentation)是计算机视觉领域的一项基础任务,旨在将图像中的每个像素分配到特定的语义类别中,即对图像中的每个像素进行分类,从而实现对图像像素级别的理解和分析。与图像分类任务不同的是,语义分割需要对图像中的每个像素进行分类,因此其输出的信息量更加丰富,能够为后续的高级任务如目标检测、图像分割、姿态估计等提供更加精细的信息支持。最后,Unet 的最后一层通常是一个 1x1 的卷积层,用于将特征图映射到指定的类别数,并生成最终的分割结果。等价于:对每个像素进行分类。原创 2023-09-25 00:23:37 · 1543 阅读 · 0 评论 -
vscode终端中打不开conda虚拟包管理
今天,想着将之前鸽的Unet网络模型给实现一下,结果发现,在vscode中运行python脚本,显示没有这包,没有那包。但是在其他的ipynb中是有的,感觉很奇怪。我检查了一下python版本,发现不是我深度学习的python3.8版本,而是默认的3.10。然后我想在vscode的终端中显式的调用conda虚拟环境中的python,但是conda命令却用不了。经过一顿分析和搜索,终于找到了原因:vscode终端的powershell脚本执行策略受限。然后就可以快乐的深度学习了。(就会发现是码的错了。原创 2023-09-24 21:32:42 · 444 阅读 · 0 评论 -
Dataset的简单使用
_init__里面是初始化方法,例如传入图片的路径,或者要不要选择预处理等。__init__ # 初始化:指定路径,是否进行预处理等# os.listdir : 会将data下面的image中所有的文件读取,放在imgs里面img_path = os.path.join(path, "image/") # 进行拼接 得到 data/train/image/# 取出path下所有的文件self.transforms = transform # 图像预处理。原创 2023-08-29 10:36:19 · 192 阅读 · 0 评论 -
pytorch中 nn.Conv2d的简单用法
这是因为**虽然两者实现了相同的卷积操作,但由于它们的初始化和权重值的不同,因此输出结果可能不完全一致。**另外,对于卷积操作的结果,输出的张量形状可能会有所不同,但数值内容应该是相似的。如果希望确保两种方式得到的输出结果完全一致,可以尝试使用相同的初始化参数,并确保权重值相同。如果输入大小为:数量N即批处理大小(batch size),输入通道数C_in,输入高度H_in,输入宽度C_in。输出大小为:数量N,输出通道数C_out,输出高度H_out,输出宽度C_out。:卷积层的卷积核大小。原创 2023-08-28 21:36:32 · 779 阅读 · 0 评论