作为一名计算机专业的研一学生,如何在最短时间内入门医学影像方向的计算机视觉(CV)研究?我结合自身经验和当前主流趋势,总结了一份清晰的【全年学习时间表+推荐资源+实战项目】分享给大家,适合基础不强但想搞科研的同学!
太好了,你已经迈出了非常棒的一步!下面我会从入门路径、学习资料(含近三年论文)、以及实战建议三方面来为你定制一份适合你的入门路线:
🎯 第一阶段:打牢基础(1-2个月)
✅ 技术基础
- Python(如果已经会就跳过)
推荐:- B站搜索“Python从入门到进阶教程”(如小甲鱼、黑马等)
- 《Python编程:从入门到实践(第2版)》
- PyTorch:最常用于医学影像方向的深度学习框架
推荐:- PyTorch 官方入门教程
- B站搜索“PyTorch深度学习入门实战”
- 图像处理基础
- OpenCV 入门(如灰度图、滤波、边缘检测)
推荐:B站搜索“OpenCV Python 教程” - PIL / skimage 入门也可适当了解
- OpenCV 入门(如灰度图、滤波、边缘检测)
🧠 第二阶段:理解医学图像领域(2-3个月)
✅ 推荐课程/资料
- FastAI - Medical Imaging Module(英文)
- 链接:https://course.fast.ai/ → 搜“Medical Imaging”
- 强烈推荐:基于 PyTorch,适合初学者快速上手
- MIT 6.S191 - Introduction to Deep Learning
- 最新版包含医学图像案例,适合补充深度学习核心知识
- https://introtodeeplearning.mit.edu/
- 中文项目推荐:
- 《医学图像处理与分析》系列(知乎、CSDN上有不少入门博客)
- 哔哩哔哩:搜索“医学图像分割”、“U-Net医学图像”
📄 第三阶段:看近三年论文(可边学边看)
✅ 推荐阅读渠道:
- Arxiv分类:https://arxiv.org/list/eess.IV/recent(图像与视频处理)
- PubMed搜索引擎:https://pubmed.ncbi.nlm.nih.gov/
- Google Scholar 搜索关键词:
medical image segmentation deep learning 2022..2025
✅ 近三年代表性论文推荐(经典/应用向):
论文名 | 简介 | 时间 |
---|---|---|
nnU-Net: Self-adapting Framework | 通用医学图像分割基线,适合初学者复现 | 2021(仍很热) |
Swin-Unet: Transformer for Med Image Seg | 将 Transformer 用于医学图像分割 | 2022 |
UNETR | ViT(Vision Transformer)用于3D医学图像分割 | 2022 |
TransUNet | CNN+Transformer融合架构 | 2021-2022 |
SAM-Med2D (2023) | Meta AI的SAM模型在医学图像上的适配版本 | 2023 |
🛠️ 实战建议(边学边做)
- 数据集推荐
- 开源项目推荐
- nnU-Net(必试!):GitHub 上最火的医学分割框架
- MONAI(by PyTorch team):医疗影像专用的深度学习工具包
- 官网:https://monai.io/
- 建议边看边复现
- 找一篇感兴趣的医学图像分割论文,复现代码(或部分模块)
- 修改成自己能跑的数据集或任务,练习非常有效!
🎓 未来发展方向(可考虑)
- 医学图像分割(如脑肿瘤、肺结节)
- 图像重建(CT降噪、MRI重建)
- 多模态融合(CT+X光、图像+文本等)
- 大模型与医学结合(SAM, GPT-4 Med 模型)
🗓️ 医学影像计算机视觉研究导向学习时间表(2025年4月–2026年3月)
📌 阶段一:基础夯实(2025年4月–6月)
目标:掌握编程基础、深度学习框架和图像处理基础。
- *Python 编程:学习数据结构、函数编程和面向对象编。
- *PyTorch 框架:掌握张量操作、自动求导机制和模型构。
- *图像处理基础:使用 OpenCV 进行图像读取、预处理和基本操。
- *数学基础:复习线性代数、概率论和优化方。
推荐资源:
《Python编程:从入门到实》 PyTorch 官方程 OpenCV-Python 程 MIT 6.S191 深度学习导论程
📌 阶段二:医学影像入门(2025年7月–9月)
目标:了解医学影像数据特点,掌握医学图像分割的基本方法。
- *医学影像数据:熟悉 DICOM 格式,了解 CT、MRI 等成像理。
- *图像分割基础:学习 U-Net、nnU-Net 等经典分割型。
- *数据集实践:使用 BraTS、LiTS 等公开数据集进行习。
推荐资源:
- FastAI 医学影模块- MONAI框架- SimpleITK教程
📌 阶段三:深入研究与论文阅读(2025年10月–12月)
目标:掌握前沿模型,培养论文阅读和分析能力。
- Transformer 模:学习 Vision Transformer、Swin Transformer 等在医学影像中应用。
- 半监督学:了解在标注数据有限情况下的学方法。
- 领域适:研究模型在不同数据分布下的泛能力。
推荐论文:
- 《From CNN to Transformer: A Review of Medical Image Segmentation Modls》
- 《Medical Image Segmentation with Domain Adaptation: A Surey》
- 《Learning with Limited Annotations: A Survey on Deep Semi-Supervised Learning for Medical Image Segmentaton》
📌 阶段四:项目实践与研究准备(2026年1月–3月)
目标:进行小型研究项目,为后续科研打下基础。
- 项目题:选择一个感兴趣的医学影像问题,如脑瘤分割。
- 模型现:基于前期学习,构建并练模型。
- 结果析:评估模型性能,撰写目报告。
建议工具
- MONI 框
- TensorBoar 可视
- Git版本控制
📚 额外建议
- 定阅读:每周阅读一篇相关领域的最新论文,保持对前沿术的关注。
- 参社区:加入相关的学术论坛或社区,如 Reddit 的 r/MachineLearning、知乎的深度学习话题等,与他人交学习经验。
- 记笔记:养成良好的笔记习惯,记录学习过程中的疑问和收获,便于习和总结。