Codeforces Round 900 (Div. 3) F 证明+质因数分解

文章讲述了如何利用质因子分解和唯一分解定理证明函数d(n)对于大整数n,其值必定能整除n。通过维护质因子及其指数的集合,对n和d(n)进行质因数分解,检查n中因子的指数是否满足d(n)的指数条件来判断整除关系。
摘要由CSDN通过智能技术生成

结论:若a存在,则d(n)必定能整除n

证明:设a的因子集为An的因子集为Na\cdot n的因子集为S。由于题目条件为gcd(a,n)=1,因此a\cdot n相当于把A中的各个因子与N的所有因子相乘,组成新的因子,并且由于an互质,不会出现重复的因子。由组合数易知\left | A \right |\cdot \left | N \right |= \left | S \right |,即d(n\cdot a)=d(n)\cdot d(a)

由此可证明当gcd(a,n)=1时,d(n)为积性函数。

进一步推导:d(n\cdot a)=n\rightarrow d(n)\cdot d(a)=n

d(n)必定能整除n,证明完毕。

由于n\cdot x的值非常大,不能直接表示,考虑对因子下手。注意到d(n)\leq 10^{9^{^{}}},由唯一分解定理可知,一个大于1的正整数N,如果它的标准分解式为N=A^{a}\cdot B^{b}...Z^{z},那么它的正因子个数,即d(n)=(1+a)(1+b)...(1+z)

因此,可以维护一个质因子及其指数的集合,每当乘以一个x时,再将x的质因子分解加入n中,即可得到当前n\cdot x的质因子分解式。计算d(n)时同理,对每一个n的分解式中每一个指数+1进行质因子分解。若d(n)能整除n,则对于n分解式中的任意一个底数,其指数必须大于d(n)分解式的指数。

//对n或x质因数分解
void divide(int n)
{
	for(int i=2;i*i<=n;i++)
		while(n%i==0)  mp[i]++,n/=i;
	if(n>1)  mp[n]++;
}
//检验d(n)能否整除n
bool check()
{
	d.clear();
	for(auto [l,r]:mp)//对指数质因数分解
	{
		r++;
		for(int i=2;i*i<=r;i++)
			while(r%i==0)  d[i]++,r/=i;
		if(r>1)  d[r]++;
	}
	for(auto [l,r]:d)
		if(mp[l]<r)  return 0;//若对于同一底数,n中指数小于d中指数,则不能整除
	return 1;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值