2025 年 AI 工程师路线图:从基础到高级应用

2025 年 AI 工程师路线图:从基础到高级应用

在这里插入图片描述

本路线图概述了成为一名精通 AI 工程师的完整路径,涵盖了从核心基础知识到高级 AI 实现的所有内容。它专为初学者和希望提升技能的人设计,为在这个快速发展的领域取得成功提供了清晰的道路。该课程由 Lunar Tech 的 D. Vasan 开发,提供实践经验和行业相关的见解。

什么是 AI 工程?

AI 工程是设计、构建和部署解决现实世界问题的 AI 系统的实践。它位于软件工程、机器学习和数据科学的交叉点。数据科学家专注于分析数据和开发模型,而 AI 工程师则将这些模型应用到现实世界中,使其能够运行。

例如,数据科学家可能会开发一个机器学习模型来检测 X 射线中的肿瘤。然后,AI 工程师将该模型集成到医院系统中,确保它在各种条件下可靠且实时地运行。AI 工程师通常也使用更高级的模型,例如深度学习和神经网络。AI 工程不仅仅是构建模型;它是关于确保这些模型解决问题并提供价值。

AI 工程的实际应用

AI 工程正在改变全球的各个行业。以下是一些例子:

  • 医疗保健: AI 系统分析医学图像、预测患者结果,并协助药物发现和患者护理。AI 工程师为这些应用构建可扩展、可靠且高效的系统。
  • 金融: AI 用于欺诈检测和算法交易,实时处理大量财务数据。工程师专注于为这些敏感信息创建安全、高效和实时的系统。
  • 零售和电子商务: 像亚马逊这样的平台使用 AI 进行个性化推荐、优化定价和库存管理。AI 工程师设计驱动这些体验的算法和系统。
  • 娱乐: 像 Netflix 这样的流媒体平台依靠 AI 进行个性化内容推荐。像 DALL-E 和 ChatGPT 这样的生成式 AI 工具正在改变内容的创作方式。
  • 自动驾驶汽车: 自动驾驶汽车依靠 AI 进行导航、物体检测和决策。AI 工程师为这些系统设计算法和硬件集成。

这些只是说明 AI 工程多样性和影响力的几个例子。对 AI 工程师的需求很高,薪水也很有竞争力,反映了这一角色在科技生态系统中的重要性。初级职位的起薪可能在 8 万到 12 万美元之间,高级职位的薪水最高可达 75 万美元(美元)。

AI 工程师的必备技能

以下技能对于成为一名全面、世界级的 AI 工程师至关重要(不仅仅是一名提示工程师,而是能够创建新算法并为尖端公司做出贡献的人):

  1. 数学: 坚实的数学基础至关重要。关键领域包括:

    • 高中数学: 基础代数、方程、几何概念(正弦、余弦、正切、毕达哥拉斯定理)。
    • 线性代数: 向量、矩阵、笛卡尔坐标系、范数、正交性、点积、线性系统、高斯消元法、矩阵分解、特征值、特征向量、奇异值分解 (SVD)。(Lunar Tech 提供关于此主题的 26+ 小时课程。)
    • 微积分: 导数、积分、梯度、优化(一阶和二阶梯度)、微积分 1 和部分微积分 2。
    • 博弈论: 纳什均衡、Minimax 策略、与生成对抗网络 (GAN) 相关的概念。
  2. 统计学: 理解统计学概念对于处理数据和解释模型结果至关重要。关键主题包括:

    • 概率: 概率分布(PDF、CDF)、样本与总体、随机变量。
    • 描述性统计: 平均值、中位数、方差、标准差、众数、协方差、相关性与因果关系。
    • 推论统计: 贝叶斯定理、条件概率、独立性、正态分布、伯努利分布、二项分布、线性回归、普通最小二乘法 (OLS)、高斯-马尔可夫定理、置信区间、假设检验(零假设和备择假设、统计显著性、I 类和 II 类错误、p 值)、中心极限定理、大数定律。
    • 降维: 主成分分析 (PCA)、因子分析、典型相关分析 (CCA)。(Lunar Tech 提供涵盖这些统计基础知识的课程。)
  3. 数据科学技能: AI 工程师需要强大的数据科学技能才能有效地处理数据。这包括:

    • 数据清洗: 处理缺失数据(插补技术)、识别和处理异常值、规范化、过滤和分组数据。
    • 数据可视化: 使用 Python、Seaborn 和 Matplotlib 等工具进行探索性数据分析 (EDA)。
    • 特征工程: 通过组合现有变量来创建新变量,以提高模型性能。
    • 数据溯源,收集和预处理。
  4. 传统机器学习: 在转向更高级的技术之前,必须对传统的机器学习算法有扎实的了解。这包括:

    • 监督学习: 分类和回归算法(线性回归、逻辑回归、决策树、装袋、提升、XGBoost、LightGBM、GBM)。
    • 无监督学习: 聚类算法(K-means、层次聚类、DBSCAN)。
    • 模型评估: 训练、测试、验证、重采样技术(自举、交叉验证)、评估指标(平均绝对误差、均方误差、F1 分数、精确率、召回率)。
    • 知道何时使用基于规则的方法. (Lunar Tech 提供机器学习基础课程。)
  5. 深度学习: 深度学习是现代 AI 的核心。关键概念包括:

    • 神经网络: 架构、神经元、感知器、激活函数、隐藏层、输入/输出层、前向传播、反向传播、损失函数。
    • 优化算法: 梯度下降、随机梯度下降 (SGD)、RMSprop、动量、Adam、AdamW。
    • 挑战: 梯度消失/爆炸、计算图。
    • 正则化: 批量归一化、层归一化、残差连接、梯度裁剪、dropout、L1/L2 正则化。
    • 高级架构: 自动编码器、卷积神经网络 (CNN)、循环神经网络 (RNN)、门控循环单元 (GRU)、长短期记忆网络 (LSTM)、生成对抗网络 (GAN)。
  6. Python 编程: AI 模型的实际实现严重依赖于编程,而 Python 是主要的语言。关键技能包括:

    • 数据科学的 Python: 处理数据(加载、过滤、分组、可视化),使用 Seaborn 和 Matplotlib 等库。
    • Python 中的机器学习和深度学习: 使用 PyTorch 和 TensorFlow 等库训练模型。
    • Python 中的基本数据结构和算法. (Lunar Tech 提供数据科学 Python 和深度学习准备课程。)
  7. 生成式 AI 和大型语言模型 (LLM): 这是一个需求量很大的领域。关键主题包括:

    • AI 基础: 了解在何处应用生成式 AI、模型开发周期和训练技术。
    • 基础生成式 AI 模型: 生成对抗网络 (GAN) – 生成器、判别器、纳什均衡、模式崩溃;变分自动编码器 (VAE) – 架构、KL 散度、ELBO、重参数化技巧。
    • Transformer: 现代 LLM 的基础。了解它们的架构、嵌入、位置编码、注意力机制(自注意力、查询、键、值)、多头注意力,它们与 RNN 和 LSTM 的区别。
    • 大型语言模型 (LLM): 关键模型(GPT、LLaMA、Falcon、BERT、Gemma、Claude、Sonnet)、开源与闭源工具 (Hugging Face)、分词、嵌入、预训练(掩码语言建模、自回归语言建模)、微调(参数高效微调 – LoRA、QLoRA)、带有人类反馈的强化学习 (RLHF)、提示工程、检索增强生成 (RAG) – 向量数据库、与生成集成、提示模板, 评估和优化(量化、知识蒸馏、剪枝、LLMOps)。
    • AI 伦理: AI 伦理原则、AI 中的偏见、隐私和数据安全、AI 法案 (欧盟)、GDPR。

前进的道路

成为一名熟练的 AI 工程师需要奉献精神和结构化的方法。上面的路线图提供了一个全面的指南,但动手经验和项目工作至关重要。通过弥合研究与行业应用之间的差距,您可以成为这个变革性领域的宝贵贡献者。考虑探索 Lunar Tech 的 AI 工程训练营等资源,以获得全面的、实践性的学习体验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

+720

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值