题目描述
给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输入格式
第一行包含整数 nn,表示数字三角形的层数。
接下来 nn行,每行包含若干整数,其中第 ii 行表示数字三角形第 ii 层包含的整数。
输出格式
输出一个整数,表示最大的路径数字和。
样例
输入数据 1
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出数据 1
30
数据范围
1≤n≤5001≤n≤500
−10000≤三角形中的整数≤10000−10000≤三角形中的整数≤10000
一道dp题目,应该很经典,第一次做的时候是从下面到上面计算,这次做的时候考虑从上面开始。首先我们考虑处理这个数字三角的斜着的部分,它的走法只有一条,只能从上面来到达。左边斜着的可以得到f[i][1]+=f[i-1][1]+该位置的值,而右边斜着的可以得到f[i]j+=f[i-1][j].但是会存在一个是问题就是f[i-1][j]找不到,其实f[i-1][j]=f[i-1][j-1].剩下的就是中间的部分了:由于f[i][j]可以由f[i-1][j]或着f[i-1][j-1]得到,所以需要判断一下那个加出来最大。
代码为f[i][j]+=max(f[i-1][j-1]+ans[i][j],f[i-1][j]+ans[i][j])。(ans[i][j]为当前位置的值)。
具体代码如下:
#include<iostream>
using namespace std;
int n,ans[505][505];
int f[505][505];
int maxn=-5000001;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
cin>>ans[i][j];
}
}
f[1][1]=ans[1][1];
f[1][2]=ans[1][1];
for(int i=2;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
if(j==1) f[i][1]+=f[i-1][1]+ans[i][j];
else if(j==i)
{
f[i-1][j]=f[i-1][j-1];
f[i][j]+=f[i-1][j]+ans[i][j];
}
else
f[i][j]+=max(f[i-1][j-1]+ans[i][j],f[i-1][j]+ans[i][j]);
}
}
for(int j=1;j<=n;j++)
{
maxn=max(maxn,f[n][j]);
}
cout<<maxn;
return 0;
}