- 博客(7)
- 收藏
- 关注
原创 增强RAG功能检索(1)——Reranker
Reranker 是信息检索(IR)生态系统中的一个重要组成部分,用于评估搜索结果,并进行重新排序,从而提升查询结果相关性。在 RAG 应用中,主要在拿到向量查询(ANN)的结果后使用 Reranker,能够更有效地确定文档和查询之间的语义相关性,更精细地对结果重排,最终提高搜索质量。
2024-06-24 15:23:11 941
原创 【项目实训】前端页面搭建和构建
因此,在我们完成开发后,我们计划固定某些选项,如大语言模型的选择、知识库的选择等,以使这些细节对用户来说不可修改,从而保持对用户的透明性。设定知识库匹配条数、匹配分数阈值固定,其实这里也可以设定知识库固定,但是暂时未编写,因为我们的数据还未完全上传至知识库中。设置公司列表,并使用streamlit的selectbox设置下拉框,但是这里还未关联到后端,因此切换公司时暂时无反应。暂时修改前端页面使之呈现出我们希望呈现的页面,但是没有关联到后端,没有添加相关动作。修改全部页面的侧边栏设置。
2024-05-31 15:22:40 298
原创 【项目实训】第12周任务及成果
在该例子中选择了美团公司,会切换到美团相应的外部知识库检索增强,当搜索“请说一下去美团岗位需要哪些能力,并给一些经验”的问题时大模型会根据上传的有关美团的知识库内容辅助生成。2、将爬取的数据加入到知识库中进行增强检索。任务2:完成RAG任务中的文本分割任务。任务3:将知识加入知识库中进行增强检索。1、实现了与大模型的语音对话。3、完成RAG任务中的文本分割任务。任务1:实现与大模型的语音对话。
2024-05-31 02:03:47 196
原创 【项目实训】第10-11周任务及成果
{ 简历的内容:小明 21岁 参与过阿里云项目......(此处是根据前端上传的简历提取出的内容,只有这里需要修改,其它部分都是固定的模版) 上面是一名求职大学生提交的简历,请你扮演一名面试官的角色,请根据该简历内容生成五个在面试中会提问的问题,要求只生成问题题目,不要生成其它内容,且各个问题用(1)、(2)、(3)、(4)、(5)的序号进行标记。因此,在我们完成开发后,我们计划固定某些选项,如大语言模型的选择、知识库的选择等,以使这些细节对用户来说不可修改,从而保持对用户的透明性。设置选择公司的下拉框。
2024-05-31 01:24:54 900
原创 【项目实训】第10周任务及成果
公司官网 + 面经(牛客)爬公司岗位(rcc)和面经(cyy)华为美团腾讯字节跳动联想快手菜鸟网易游戏米哈游阿里巴巴淘天集团小米京东。
2024-05-30 20:57:17 309
原创 【项目实训】第八-九周任务及成果
见小组成员任琛琛同学博客杏仁橙橙饼-CSDN博客基于ChatGLM等大语言模型与Langchain等应用框架,所实现的开源、可离线部署的RAG项目项目中默认使用大语言模型是,Embedding模型是中文开源大语言模型chatglm3. 开源 · ChatGLM3bge提供RAG领域会用到的模型我有bge-large的本地资源,大小不大,只有2g。
2024-05-30 20:55:03 770
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人