python动态柱状图的构建从零基础到入门以及代码的逐句分析

目录

1、基础柱状图的构建

代码实现

效果展示

2、基础时间线柱状图的构建

代码实现

3、sort排序基础

代码实现

效果展示

3、【1969-2019全球GDP前8国家】案例

代码实现

4、代码分析总结:


1、基础柱状图的构建

代码实现

from pyecharts.options import LabelOpts
from pyecharts.charts import Bar
bar=Bar()
bar.add_xaxis(['中国',"美国","英国"])
bar.add_yaxis("GDP",[30,20,10],label_opts=LabelOpts(position='right'))
bar.reversal_axis()
bar.render('基础柱状图.html')

效果展示

2、基础时间线柱状图的构建

代码实现

from pyecharts.options import LabelOpts
from pyecharts.charts import Bar,Timeline
from pyecharts.globals import ThemeType

bar1=Bar()
bar1.add_xaxis(['中国',"美国","英国"])
bar1.add_yaxis("GDP",[30,45,40],label_opts=LabelOpts(position='right'))
bar1.reversal_axis()

bar2=Bar()
bar2.add_xaxis(['中国',"美国","英国"])
bar2.add_yaxis("GDP",[50,55,45],label_opts=LabelOpts(position='right'))
bar2.reversal_axis()

bar3=Bar()
bar3.add_xaxis(['中国',"美国","英国"])
bar3.add_yaxis("GDP",[70,70,55],label_opts=LabelOpts(position='right'))
bar3.reversal_axis()

timeline=Timeline( {'theme':ThemeType.LIGHT})
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")
timeline.add_schema(
    play_interval=100,
    # 播放间隔(毫秒)
    is_timeline_show=True,
    # 是否播放时显示时间线
    is_auto_play=True,
    # 是否自动播放
    is_loop_play=True
    # 是否循环自动播放
)
timeline.render("基础时间线柱状图.html")
 

3、sort排序基础

代码实现

#sort带名函数排序
def element(ele):
    return ele[1]
my_list=[['a',333],['b',44],['c',555]]
my_list.sort(key=element,reverse=False)
print(my_list)

#sort匿名函数排序
my_list=[['a',333],['b',44],['c',555]]
my_list.sort(key=lambda element: element[1],reverse=False)
print(my_list)
 

效果展示

3、【1969-2019全球GDP前8国家】案例

代码实现

from pyecharts.options import LabelOpts,TitleOpts
from pyecharts.charts import Bar,Timeline
from pyecharts.globals import ThemeType
timeline=Timeline({'theme':ThemeType.LIGHT})
# 默认编码格式:GB2312 ,用Notpad++
f=open(r'D:\txt\动态柱状图数据\1960-2019全球GDP数据.csv','r',encoding="GB2312")
lines=f.readlines()
lines.pop(0)
f.close()
my_dict=dict()
for line in lines:
    year=int(line.split(',')[0])
    country=line.split(',')[1]
    gdp=float(line.split(',')[2])
    try:
        my_dict[year].append([country,gdp])
    except Exception as e:
        my_dict[year]=[]
        my_dict[year].append([country, gdp])


# 对年份进行排序的结果是:
# print(type(sorted(my_dict.keys())),sorted(my_dict.keys()))
# print(type(sorted(my_dict)),sorted(my_dict))
sorted_year_lsit=sorted(my_dict)
for year in sorted_year_lsit:
    my_dict[year].sort(key=lambda ele: ele[1],reverse=True)
    year_data=my_dict[year][0:8][::-1]
    x_data=[]
    y_data=[]
    for c in year_data:
        x_data.append(c[0])
        y_data.append(c[1]/100000000)
    bar=Bar()
    bar.add_xaxis(x_data)
    bar.add_yaxis("GDP(亿)",y_data,label_opts=LabelOpts(position="ritght"))
    bar.reversal_axis()
    bar.set_global_opts(
        title_opts=TitleOpts(title=f"{year}年全球前8的GDP数据")

    )
    timeline.add(bar,str(year))
timeline.add_schema(
    play_interval=300,
    # 播放间隔(毫秒)
    is_timeline_show=True,
    # 是否播放时显示时间线
    is_auto_play=True,
    # 是否自动播放
    is_loop_play=True
    # 是否循环自动播放
)
timeline.render("1969-2019全球GDP前8国家.html")

4、代码分析总结:

  • LabelOpts用于y轴的数据位置右移

bar.add_yaxis("GDP(亿)",y_data,label_opts=LabelOpts(position="ritght"))

  • TitleOpts用于标题的设置

bar.set_global_opts(

    title_opts=TitleOpts(title=f"{year}年全球前8的GDP数据")
)
  • from pyecharts.globals import ThemeType用于主题颜色的设置
timeline=Timeline({'theme':ThemeType.LIGHT})
  •  Windows10默认编码格式:GB2312 ,用软件Notpad++可以查看编码方式
  • lines=f.readlines()读取全部行获得列表
  • lines.pop(0)去除第一行不规范的数据
  • my_dict=dict()创建空字典,也可以用={}
  • for line in lines:
        year=int(line.split(',')[0])
        country=line.split(',')[1]
        gdp=float(line.split(',')[2])

对每一行进行取出,并获取当前行的年份,国家,GDP(split进行切片)

  • try:
        my_dict[year].append([country,gdp])
    except Exception as e:
        my_dict[year]=[]
        my_dict[year].append([country, gdp])

利用异常捕获的方法,如果第一次本年份不存在,则创建该年份的一个空列表再追加国家和对应的GDP,如果年份存在则直接在其中追加新的元素

  • # print(type(sorted(my_dict.keys())),sorted(my_dict.keys()))
    # print(type(sorted(my_dict)),sorted(my_dict))

两种方法都可以对key进行排序操作,得到字典中keys的排序结果

  • for year in sorted_year_lsit:
        my_dict[year].sort(key=lambda ele: ele[1],reverse=True)
        year_data=my_dict[year][0:8][::-1]
        x_data=[]
        y_data=[]

利用匿名函数,对字典的年份分别取出,再取出该年份中对应GDP排序前八的国家,并反向取出(这里反向取出是为了方便后续柱状图呈现高值在上方的视觉)

  • for c in year_data:
        x_data.append(c[0])
        y_data.append(c[1]/100000000)

取出对应的国家和GDP分别放入x和y轴的记录列表中

  • bar=Bar()
    bar.add_xaxis(x_data)
    bar.add_yaxis("GDP(亿)",y_data,label_opts=LabelOpts(position="ritght"))
    bar.reversal_axis()
    bar.set_global_opts(
        title_opts=TitleOpts(title=f"{year}年全球前8的GDP数据")
    )

创建柱状图,放入x,y轴数据,翻转xy坐标轴,设置标题

  • timeline.add(bar,str(year))
    timeline.add_schema(
        play_interval=300,
        # 播放间隔(毫秒)
        is_timeline_show=True,
        # 是否播放时显示时间线
        is_auto_play=True,
        # 是否自动播放
        is_loop_play=True
        # 是否循环自动播放
    )

创建时间线,并设置好基本参数

  • timeline.render("1969-2019全球GDP前8国家.html")

生成html文件

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coleak

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值