目录
1、基础柱状图的构建
代码实现
from pyecharts.options import LabelOpts
from pyecharts.charts import Bar
bar=Bar()
bar.add_xaxis(['中国',"美国","英国"])
bar.add_yaxis("GDP",[30,20,10],label_opts=LabelOpts(position='right'))
bar.reversal_axis()
bar.render('基础柱状图.html')
效果展示
2、基础时间线柱状图的构建
代码实现
from pyecharts.options import LabelOpts
from pyecharts.charts import Bar,Timeline
from pyecharts.globals import ThemeType
bar1=Bar()
bar1.add_xaxis(['中国',"美国","英国"])
bar1.add_yaxis("GDP",[30,45,40],label_opts=LabelOpts(position='right'))
bar1.reversal_axis()
bar2=Bar()
bar2.add_xaxis(['中国',"美国","英国"])
bar2.add_yaxis("GDP",[50,55,45],label_opts=LabelOpts(position='right'))
bar2.reversal_axis()
bar3=Bar()
bar3.add_xaxis(['中国',"美国","英国"])
bar3.add_yaxis("GDP",[70,70,55],label_opts=LabelOpts(position='right'))
bar3.reversal_axis()
timeline=Timeline( {'theme':ThemeType.LIGHT})
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")
timeline.add_schema(
play_interval=100,
# 播放间隔(毫秒)
is_timeline_show=True,
# 是否播放时显示时间线
is_auto_play=True,
# 是否自动播放
is_loop_play=True
# 是否循环自动播放
)
timeline.render("基础时间线柱状图.html")
3、sort排序基础
代码实现
#sort带名函数排序
def element(ele):
return ele[1]
my_list=[['a',333],['b',44],['c',555]]
my_list.sort(key=element,reverse=False)
print(my_list)
#sort匿名函数排序
my_list=[['a',333],['b',44],['c',555]]
my_list.sort(key=lambda element: element[1],reverse=False)
print(my_list)
效果展示
3、【1969-2019全球GDP前8国家】案例
代码实现
from pyecharts.options import LabelOpts,TitleOpts
from pyecharts.charts import Bar,Timeline
from pyecharts.globals import ThemeType
timeline=Timeline({'theme':ThemeType.LIGHT})
# 默认编码格式:GB2312 ,用Notpad++
f=open(r'D:\txt\动态柱状图数据\1960-2019全球GDP数据.csv','r',encoding="GB2312")
lines=f.readlines()
lines.pop(0)
f.close()
my_dict=dict()
for line in lines:
year=int(line.split(',')[0])
country=line.split(',')[1]
gdp=float(line.split(',')[2])
try:
my_dict[year].append([country,gdp])
except Exception as e:
my_dict[year]=[]
my_dict[year].append([country, gdp])
# 对年份进行排序的结果是:
# print(type(sorted(my_dict.keys())),sorted(my_dict.keys()))
# print(type(sorted(my_dict)),sorted(my_dict))
sorted_year_lsit=sorted(my_dict)
for year in sorted_year_lsit:
my_dict[year].sort(key=lambda ele: ele[1],reverse=True)
year_data=my_dict[year][0:8][::-1]
x_data=[]
y_data=[]
for c in year_data:
x_data.append(c[0])
y_data.append(c[1]/100000000)
bar=Bar()
bar.add_xaxis(x_data)
bar.add_yaxis("GDP(亿)",y_data,label_opts=LabelOpts(position="ritght"))
bar.reversal_axis()
bar.set_global_opts(
title_opts=TitleOpts(title=f"{year}年全球前8的GDP数据")
)
timeline.add(bar,str(year))
timeline.add_schema(
play_interval=300,
# 播放间隔(毫秒)
is_timeline_show=True,
# 是否播放时显示时间线
is_auto_play=True,
# 是否自动播放
is_loop_play=True
# 是否循环自动播放
)
timeline.render("1969-2019全球GDP前8国家.html")
4、代码分析总结:
- LabelOpts用于y轴的数据位置右移
bar.add_yaxis("GDP(亿)",y_data,label_opts=LabelOpts(position="ritght"))
- TitleOpts用于标题的设置
bar.set_global_opts(
title_opts=TitleOpts(title=f"{year}年全球前8的GDP数据") )
-
from pyecharts.globals import ThemeType用于主题颜色的设置
timeline=Timeline({'theme':ThemeType.LIGHT})
- Windows10默认编码格式:GB2312 ,用软件Notpad++可以查看编码方式
-
lines=f.readlines()读取全部行获得列表
-
lines.pop(0)去除第一行不规范的数据
-
my_dict=dict()创建空字典,也可以用={}
-
for line in lines: year=int(line.split(',')[0]) country=line.split(',')[1] gdp=float(line.split(',')[2])
对每一行进行取出,并获取当前行的年份,国家,GDP(split进行切片)
-
try: my_dict[year].append([country,gdp]) except Exception as e: my_dict[year]=[] my_dict[year].append([country, gdp])
利用异常捕获的方法,如果第一次本年份不存在,则创建该年份的一个空列表再追加国家和对应的GDP,如果年份存在则直接在其中追加新的元素
-
# print(type(sorted(my_dict.keys())),sorted(my_dict.keys())) # print(type(sorted(my_dict)),sorted(my_dict))
两种方法都可以对key进行排序操作,得到字典中keys的排序结果
-
for year in sorted_year_lsit: my_dict[year].sort(key=lambda ele: ele[1],reverse=True) year_data=my_dict[year][0:8][::-1] x_data=[] y_data=[]
利用匿名函数,对字典的年份分别取出,再取出该年份中对应GDP排序前八的国家,并反向取出(这里反向取出是为了方便后续柱状图呈现高值在上方的视觉)
-
for c in year_data: x_data.append(c[0]) y_data.append(c[1]/100000000)
取出对应的国家和GDP分别放入x和y轴的记录列表中
-
bar=Bar() bar.add_xaxis(x_data) bar.add_yaxis("GDP(亿)",y_data,label_opts=LabelOpts(position="ritght")) bar.reversal_axis() bar.set_global_opts( title_opts=TitleOpts(title=f"{year}年全球前8的GDP数据") )
创建柱状图,放入x,y轴数据,翻转xy坐标轴,设置标题
-
timeline.add(bar,str(year)) timeline.add_schema( play_interval=300, # 播放间隔(毫秒) is_timeline_show=True, # 是否播放时显示时间线 is_auto_play=True, # 是否自动播放 is_loop_play=True # 是否循环自动播放 )
创建时间线,并设置好基本参数
-
timeline.render("1969-2019全球GDP前8国家.html")
生成html文件