1、为何信道容量有极限?
信号在信道中传输时会衰减和失真,而且呢受到噪声干扰。主要限制来自两个方面:
- 码间串扰 (ISI):由于信道带宽有限,信号高频分量丢失,导致码元波形展宽、重叠,使得接收端难以区分每个码元。
- 噪声:信道中的随机噪声会破坏信号波形,使得接收端误判码元。
两大定理分别从不同角度解决了这些问题,给出了信道容量的理论上限。
2、奈奎斯特定理 (Nyquist Theorem) - 针对无噪声理想信道
奈氏准则只考虑带宽限制引起的码间串扰,完全忽略噪声的影响。它描述的是理想低通信道(带宽有限、无噪声)的极限情况。
1. 核心公式
2. 关键结论与理解
- 码元速率上限:任何信道的码元传输速率(波特率) 都有一个绝对上限,即2W。超过此速率,码间串扰将变得不可接受。
- 带宽决定码元能力:信道的带宽 W 越宽,其允许通过的码元速率就越高。
- 未限制比特率:奈氏准则本身并未直接限制比特率。通过提高一个码元携带的比特数(即采用更高进制的调制方式,增大 V),可以在固定的码元速率下提升比特率。
举例:.在一条带宽为200 kHz的无噪声信道上,若采用4个幅值的ASK调制,则该信道的最大数据传输速率是( )。
该信道最大数据传输速率= ![]()
奈氏准则的局限性:它假设了一个无噪声的理想环境,这在现实中是不存在的。
3、香农定理 (Shannon Theorem) - 针对有噪声现实信道
香农定理考虑了现实信道中存在的高斯白噪声。它给出了在有随机噪声干扰的信道中,进行无差错传输的绝对极限比特率。
1. 核心公式

2. 信噪比的两种表示法及转换

3. 关键结论与理解
- 信噪比至关重要:信道的极限容量不仅取决于带宽 W,还极大依赖于信噪比
。高信噪比意味着强信号、弱噪声,信道容量大。
- 上限是确定的:对于给定的带宽 W和信噪比
,香农定理给出了一个无法逾越的、确定的无差错传输速率上限。
- 理论可实现性:只要实际传输速率低于这个极限速率 C,就总可以找到一种编码方式,使得信号的差错率任意小(近似无差错传输)。反之,如果超过 C,则无差错传输绝无可能。
- 实际速率较低:由于实际编码方式无法达到香农极限,且信道中还存在其他非理想因素,实际通信系统的速率远低于香农极限。
4、奈氏准则 vs. 香农定理
|
对比维度 |
奈奎斯特定理 (奈氏准则) |
香农定理 |
|
核心问题 |
解决码间串扰 (ISI) |
解决噪声干扰 |
|
前提假设 |
理想低通、无噪声信道 |
带宽受限、有高斯白噪声信道 |
|
限制对象 |
码元传输速率 (波特率) 的上限 |
信息传输速率 (比特率) 的上限 |
|
核心参数 |
带宽 W,码元电平数 V |
带宽 W,信噪比 |
|
公式 | ||
|
揭示关系 |
波特率与带宽的关系;一个码元能携带的比特数理论上是无限的 |
一个码元能携带的比特数有绝对上限,由信噪比决定 |
在实际的有噪声信道中,信道的最大容量同时受到码间串扰和噪声的双重限制。因此,系统的最终极限数据传输速率必须同时满足两个定理的要求,取二者计算结果的最小值。
给我们的设计启示事什么呢?
- 奈氏准则鼓励我们使用更高进制的调制(增大 V)来提升速率。
- 但香农定理指出,V不可以无限的增大,它受限于呢信道的信噪比 S/N。信噪比决定了每个码元所能携带的最大理论比特数(
的最大值)。
- 所以要想提高信道容量,要么增加带宽 W,要么提高信噪比 S/N。
总结
信道容量是有极限滴,主要因为信号会衰减、失真,并受到两种干扰:一是带宽不足导致码元重叠(码间串扰),二是随机噪声破坏信号。
进而引出了两大经典理论:
- 奈氏准则(理想派):在无噪声环境下,它指出带宽决定了你每秒最多能发送多少个码元(波形),但没说一个码元能带多少数据。这就好比一条路的宽度决定了每秒最多能过多少辆车,但没说每辆车能装多少货。
- 香农定理(现实派):在有噪声的真实世界中,它给出了绝对的速度上限。这个上限由带宽和信噪比共同决定。信噪比低了,就像周围噪音太大,你说话再快(高码元率)对方也听不清咯是的哈。
🚀 为了帮助大家更好地掌握本文关于信道的极限容量 的核心,小哥特意准备了下面的思维导图请过两眼!


2437

被折叠的 条评论
为什么被折叠?



