物理层-信道的极限容量

1、为何信道容量有极限?

信号在信道中传输时会衰减和失真,而且呢受到噪声干扰。主要限制来自两个方面:

  1. 码间串扰 (ISI):由于信道带宽有限,信号高频分量丢失,导致码元波形展宽、重叠,使得接收端难以区分每个码元。
  2. 噪声:信道中的随机噪声会破坏信号波形,使得接收端误判码元。

两大定理分别从不同角度解决了这些问题,给出了信道容量的理论上限。


2、奈奎斯特定理 (Nyquist Theorem) - 针对无噪声理想信道

奈氏准则只考虑带宽限制引起的码间串扰,完全忽略噪声的影响。它描述的是理想低通信道(带宽有限、无噪声)的极限情况。

1. 核心公式

2. 关键结论与理解
  1. 码元速率上限:任何信道的码元传输速率(波特率) 都有一个绝对上限,即2W。超过此速率,码间串扰将变得不可接受。
  2. 带宽决定码元能力:信道的带宽 W 越宽,其允许通过的码元速率就越高。
  3. 未限制比特率:奈氏准则本身并未直接限制比特率。通过提高一个码元携带的比特数(即采用更高进制的调制方式,增大 V),可以在固定的码元速率下提升比特率。

举例:.在一条带宽为200 kHz的无噪声信道上,若采用4个幅值的ASK调制,则该信道的最大数据传输速率是( )。

该信道最大数据传输速率= 

奈氏准则的局限性:它假设了一个无噪声的理想环境,这在现实中是不存在的。


3、香农定理 (Shannon Theorem) - 针对有噪声现实信道

香农定理考虑了现实信道中存在的高斯白噪声。它给出了在有随机噪声干扰的信道中,进行无差错传输的绝对极限比特率

1. 核心公式

2. 信噪比的两种表示法及转换

3. 关键结论与理解
  1. 信噪比至关重要:信道的极限容量不仅取决于带宽 W,还极大依赖于信噪比 \frac{S}{N}。高信噪比意味着强信号、弱噪声,信道容量大
  2. 上限是确定的:对于给定的带宽 W和信噪比 \frac{S}{N},香农定理给出了一个无法逾越的、确定的无差错传输速率上限
  3. 理论可实现性:只要实际传输速率低于这个极限速率 C,就总可以找到一种编码方式,使得信号的差错率任意小(近似无差错传输)。反之,如果超过 C,则无差错传输绝无可能。
  4. 实际速率较低:由于实际编码方式无法达到香农极限,且信道中还存在其他非理想因素,实际通信系统的速率远低于香农极限。


4、奈氏准则 vs. 香农定理

对比维度

奈奎斯特定理 (奈氏准则)

香农定理

核心问题

解决码间串扰 (ISI)

解决噪声干扰

前提假设

理想低通、无噪声信道

带宽受限、有高斯白噪声信道

限制对象

码元传输速率 (波特率) 的上限

信息传输速率 (比特率) 的上限

核心参数

带宽 W,码元电平数 V

带宽 W,信噪比\frac{S}{N}

公式

C = 2W \log_2 VC = W \log_2 (1 + S/N)

揭示关系

波特率与带宽的关系;一个码元能携带的比特数理论上是无限的

一个码元能携带的比特数有绝对上限,由信噪比决定

        在实际的有噪声信道中,信道的最大容量同时受到码间串扰噪声的双重限制。因此,系统的最终极限数据传输速率必须同时满足两个定理的要求,取二者计算结果的最小值

R_{b(max)} = \min(2W \log_2 V,\ W \log_2 (1+S/N))

给我们的设计启示事什么呢?

  1. 奈氏准则鼓励我们使用更高进制的调制(增大 V)来提升速率。
  2. 但香农定理指出,V不可以无限的增大,它受限于呢信道的信噪比 S/N。信噪比决定了每个码元所能携带的最大理论比特数\log_2 V 的最大值)。
  3. 所以要想提高信道容量,要么增加带宽 W,要么提高信噪比 S/N


总结

        信道容量是有极限滴,主要因为信号会衰减、失真,并受到两种干扰:一是带宽不足导致码元重叠(码间串扰),二是随机噪声破坏信号。

进而引出了两大经典理论:

  1. 奈氏准则(理想派):在无噪声环境下,它指出带宽决定了你每秒最多能发送多少个码元(波形),但没说一个码元能带多少数据。这就好比一条路的宽度决定了每秒最多能过多少辆车,但没说每辆车能装多少货。
  2. 香农定理(现实派):在有噪声的真实世界中,它给出了绝对的速度上限。这个上限由带宽信噪比共同决定。信噪比低了,就像周围噪音太大,你说话再快(高码元率)对方也听不清咯是的哈。

🚀 为了帮助大家更好地掌握本文关于信道的极限容量 的核心,小哥特意准备了下面的思维导图请过两眼!

内容概要:本文介绍了一个基于MATLAB实现的多目标粒子群优化算法(MOPSO)在无人机三维路径规划中的应用。该代码实现了完整的路径规划流程,包括模拟数据生成、障碍物随机生成、MOPSO优化求解、帕累托前沿分析、最优路径选择、代理模型训练以及丰富的可视化功能。系统支持用户通过GUI界面设置参数,如粒子数量、迭代次数、路径节点数等,并能一键运行完成路径规划与评估。代码采用模块化设计,包含详细的注释,同时提供了简洁版本,便于理解和二次开发。此外,系统还引入了代理模型(surrogate model)进行性能预测,并通过多种图表对结果进行全面评估。 适合人群:具备一定MATLAB编程基础的科研人员、自动化/控制/航空航天等相关专业的研究生或高年级本科生,以及从事无人机路径规划、智能优化算法研究的工程技术人员。 使用场景及目标:①用于教学演示多目标优化算法(如MOPSO)的基本原理与实现方法;②为无人机三维路径规划提供可复现的仿真平台;③支持对不同参数配置下的路径长度、飞行时间、能耗与安全风险之间的权衡进行分析;④可用于进一步扩展研究,如融合动态环境、多无人机协同等场景。 其他说明:该资源包含两份代码(详细注释版与简洁版),运行结果可通过图形界面直观展示,包括Pareto前沿、收敛曲线、风险热图、路径雷达图等,有助于深入理解优化过程与结果特性。建议使用者结合实际需求调整参数,并利用提供的模型导出功能将最优路径应用于真实系统。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值