第一章:函数极限与连续
函数:研究对象
极限:1. 函数极限,2. 数列极限
表达式只有两种,一种是函数,一种是常数,给任意表达式,如果含有未知数,则就是一个函数,若无未知数,则就是常数。对于函数,如果知道一个 f ( x ) f(x) f(x)的表达式,就可以把 f ( x ) f(x) f(x)求出来,就算求不出来,我们也可以通过某种方式来研究这个函数的极值,单调性,等一系列指标。例如: f ( x ) ∈ [ − π , π ] f(x)\in [-\pi,\pi] f(x)∈[−π,π],则 f ( x ) = x 1 + c o s 2 x + ∫ − π π f ( x ) s i n x d x f(x) = \frac{x}{1+cos^2x}+\int^\pi_{-\pi}f(x)sinxdx f(x)=1+cos2xx+∫−ππf(x)sinxdx,求 f ( x ) f(x) f(x)
变量:如果有两个变量,并且一个变量又由另一个变量所决定,可以考虑使用换元,把这两个变量合成一个变量。
第一节:函数
基本概念
-
函数的组成:定义域,对应法则,值域,判断两个函数是否相等,就是看这三个是否相等
-
函数的表示:
表示方法: { 显函数 y = f ( x ) 隐函数 由 F ( x , y ) = 0 确定 由参数方程确定的函数 { x = φ ( t ) y = δ ( t ) ⇒ y = g ( x ) 表示方法:\begin{cases} 显函数 & y = f(x)\\ 隐函数 & 由 F(x,y) = 0 确定\\ 由参数方程确定的函数 & \begin{cases}x = \varphi(t)\\ y = \delta(t)\end{cases} \Rightarrow y = g(x)\\ \end{cases} 表示方法:⎩ ⎨ ⎧显函数隐函数由参数方程确定的函数y=f(x)由F(x,y)=0确定{x=φ(t)y=δ(t)⇒y=g(x) -
反函数定义:设有$y= f(x)(x \in D) 为单调函数,其值域为 为单调函数,其值域为 为单调函数,其值域为R , 对任意 ,对任意 ,对任意y \in R ,有唯一确定的 ,有唯一确定的 ,有唯一确定的x \in D 与之对应,称 与之对应,称 与之对应,称x 为 为 为y 的反函数,记为 的反函数,记为 的反函数,记为x = f^{-1}(y)$
-
复合函数:设 u = φ ( x ) ( x ∈ D 1 ) , y = f ( u ) ( u ∈ D 2 ) u = \varphi(x) (x \in D_1),y = f(u)(u \in D_2) u=φ(x)(x∈D1),y=f(u)(u∈D2),且对任意的 x ∈ D 1 x \in D_1 x∈D1,有 φ ( x ) ∈ D 2 \varphi(x) \in D_2 φ(x)∈D2,则称 y y y为 x x x的复合函数,记为$ f[\varphi(x)]$
-
基本初等函数:
基本初等函数: { x a a x ( a > 0 , a ≠ 1 ) l o g a x ( a > 0 , a ≠ 1 ) 等价变换 { l n M N = l n M − l n N 除法变减法 l n ( M N ) = l n M + l n N 乘法变加法 l n M N = N l n M 幂指变乘法 s i n x , c o s x , t a n x , c o t x , s e c x , c s c x 三角函数等价变换 { s i n 2 x + c o s 2 x = 1 t a n 2 x + 1 = s e c 2 x c o t 2 x + 1 = c s c 2 x a r c s i n x , a r c c o s x , a r c t a n x , a r c c o t x 基本初等函数:\begin{cases} x^a\\ a^x (a>0,a \neq 1)\\ log_ax (a>0,a \neq 1) &等价变换 \begin{cases}ln \frac{M}{N} = lnM - lnN &除法变减法\\ ln(MN) = lnM + lnN & 乘法变加法 \\ lnM^N = NlnM & 幂指变乘法\end{cases}\\ sinx,cosx,tanx,cotx,secx,cscx & 三角函数等价变换 \begin{cases} sin^2x + cos^2x = 1\\ tan^2x + 1 = sec^2x \\ cot^2x + 1 = csc^2x \end{cases} \\ arcsinx,arccosx,arctanx,arccotx\\ \end{cases} 基本初等函数:⎩ ⎨ ⎧xaax(a>0,a=1)logax(a>0,a=1)sinx,cosx,tanx,cotx,secx,cscxarcsinx,arccosx,arctanx,arccotx等价变换⎩ ⎨ ⎧lnNM=lnM−lnNln(MN)=lnM+lnNlnMN=NlnM除法变减法乘法变加法幂指变乘法三角函数等价变换⎩ ⎨ ⎧sin2x+cos2x=1tan2x+1=sec2xcot2x+1=csc2x -
初等函数:由常数及基本初等变换经过有限次的四则运算和复合运算而成的式子称为初等函数。分段函数不是初等函数,常见的分段函数:绝对值函数,取整函数,最值函数max,min
重要性质
-
反函数:
- 一个式子,经过相同数量的正函数和对应的反函数的多层调用后还等于原式。例如$ f^{-1}(f(x)) = x, f(f^{-1}(y)) = y$
- 反函数和原函数的单调性相同。
- 若一个奇函数有反函数,则反函数也是一个奇函数。
-
初等函数性质:
- 对于 f ( x ) = l o g a x f(x) = log_ax f(x)=logax,若 a > 1 a>1 a>1,则 f ( x ) f(x) f(x)单调递增。若 0 < a < 1 0<a<1 0<a<1,则 f ( x ) f(x) f(x)单调递减。
- 对于 f ( x ) = a x f(x) = a^x f(x)=ax,若 a > 1 a>1 a>1,则 f ( x ) f(x) f(x)单调递增,若 0 < a < 1 0<a<1 0<a<1,则 f ( x ) f(x) f(x)单调递减。这个结论和上个结论也验证了反函数和原函数的点调性一致。
- 对于 f 1 ( x ) = 1 x a f_1(x) = \frac{1}{x^a} f1(x)=xa1, f 2 ( x ) = 1 x b f_2(x) = \frac{1}{x^b} f2(x)=xb1,若 a > b > 0 a>b>0 a>b>0,则当 0 < x < 1 0<x<1 0<x<1时, f 1 > f 2 f_1>f_2 f1>f2,当 x > 1 x>1 x>1时, f 1 < f 2 f_1<f_2 f1<f2
-
函数的基本性质
-
有界性:常见的有界函数 s i n x , c o s x , a r c sinx,cosx,arc sinx,cosx,arc
-
单调性: f [ g ( x ) ] f[g(x)] f[g(x)]的单调性,可有 g ( x ) , f ( x ) g(x),f(x) g(x),f(x)单调性确定,遵循同增异减。
-
奇偶性:
- 常见的奇函数 f ( x ) = − f ( − x ) , s i n x , a r c s i n x , t a n x , a r c t a n x , x 2 n + 1 , l n ( x + 1 + x 2 ) , f ( x ) − f ( − x ) , l n 1 − x 1 + x f(x) = -f(-x),sinx,arcsinx,tanx,arctanx,x^{2n+1},ln(x + \sqrt{1 + x^2}),f(x)-f(-x),ln\frac{1-x}{1+x} f(x)=−f(−x),sinx,arcsinx,tanx,arctanx,x2n+1,ln(x+1+x2),f(x)−f(−x),ln1+x1−x
- 常见的偶函数 f ( x ) = f ( − x ) , c o s x , a r c c o s x , x 2 n , ∣ x ∣ , f ( x ) + f ( − x ) f(x) = f(-x),cosx,arccosx,x^{2n},|x|,f(x)+f(-x) f(x)=f(−x),cosx,arccosx,x2n,∣x∣,f(x)+f(−x)
- 奇偶函数的变换: 奇 ⋅ 奇 = 偶,奇 ⋅ 偶 = 奇,偶 ⋅ 偶 = 偶 奇\cdot奇 = 偶,奇\cdot偶 = 奇,偶\cdot偶 = 偶 奇⋅奇=偶,奇⋅偶=奇,偶⋅偶=偶
- f ( x ) f(x) f(x)为奇函数,且在 x = 0 x = 0 x=0,处有定义,则 f ( 0 ) = 0 f(0) = 0 f(0)=0
- 求导改变奇偶性
- f ( x ) f(x) f(x)为奇函数求导后 f ′ ( x ) f^{'}(x) f′(x)变成偶函数
- f ( x ) f(x) f(x)为偶函数求导后 f ′ ( x ) f^{'}(x) f′(x)变成奇函数
- 导函数是奇函数 ⇒ \Rightarrow ⇒原函数是偶函数
- 导数是偶函数 ⇏ \nRightarrow ⇏原函数是奇函数
-
周期性: f ( x ± T ) = f ( x ) f(x\pm T) = f(x) f(x±T)=f(x)
- 原函数推导数的周期性:求导保持周期性, f ( x ) f(x) f(x)以 T T T为周期$ \Rightarrow f^{'}(x) 以 以 以T$为周期
- 导数推原函数的周期性:设 f ( x ) f(x) f(x)以 T T T为周期函数且 ∫ 0 T f ( t ) d t = 0 ⇒ F ( x ) = ∫ a x f ( t ) d t \int^T_0f(t)dt = 0\Rightarrow F(x) = \int^x_af(t)dt ∫0Tf(t)dt=0⇒F(x)=∫axf(t)dt以 T T T为周期函数
-
重要公式
-
根号有理化: ( a + b ) ( a − b ) = a − b (\sqrt{a} + \sqrt{b})(\sqrt{a}-\sqrt{b}) = a - b (a+b)(a−b)=a−b
-
三角函数初等变换
s i n 2 x + c o s 2 x = 1 t a n 2 x + 1 = s e c 2 x c o t 2 x + 1 = c s c 2 x c o s 2 x = 2 c o s 2 x − 1 c o s 2 x = 1 − 2 s i n 2 x s i n 2 x = 2 s i n x c o s x c o s 2 x = 1 + c o s 2 x 2 s i n 2 x = 1 − c o s 2 x 2 sin^2x + cos^2x = 1\\ tan^2x + 1 = sec^2x \\ cot^2x + 1 = csc^2x\\ cos2x = 2cos^2x -1\\ cos2x = 1 - 2sin^2x\\ sin2x = 2sinxcosx\\ cos^2x = \frac{1 + cos2x}{2}\\ sin^2x = \frac{1 - cos2x}{2}\\ sin2x+cos2x=1tan2x+1=sec2xcot2x+1=csc2xcos2x=2cos2x−1cos2x=1−2sin2xsin2x=2sinxcosxcos2x=21+cos2xsin2x=21−cos2x -
对数等价变换 等价变换 { l n M N = l n M − l n N 除法变减法 l n ( M N ) = l n M + l n N 乘法变加法 l n M N = N l n M 幂指变乘法 等价变换 \begin{cases}ln \frac{M}{N} = lnM - lnN &除法变减法\\ln(MN) = lnM + lnN & 乘法变加法 \\ lnM^N = NlnM & 幂指变乘法\end{cases} 等价变换⎩ ⎨ ⎧lnNM=lnM−lnNln(MN)=lnM+lnNlnMN=NlnM除法变减法乘法变加法幂指变乘法
解题思路
-
求 y = s i n x y= sinx y=sinx,定义域在非 ( − π 2 , π 2 ) (-\frac{\pi}{2},\frac{\pi}{2}) (−2π,2π)上的反函数:
- 步骤:
- step1:找定义域内的曲线和 ( − π 2 , π 2 ) (-\frac{\pi}{2},\frac{\pi}{2}) (−2π,2π)内的曲线的关系
- step2:列等式求解
- 例题:
- 求 y = s i n x , x ∈ [ π 2 , π ] y =sinx,x\in [\frac{\pi}{2},\pi] y=sinx,x∈[2π,π]的反函数
- 步骤:
-
复合函数题型:
-
复 + 内 -> 外
- method1:换元
- method2:凑内
- 例题:
- 已知 f ( s i n x ) = c o s 2 x + 3 x + 2 , 求 f ( x ) 已知f(sinx) = cos2x+3x+2,求f(x) 已知f(sinx)=cos2x+3x+2,求f(x)
-
内 + 外 -> 复
- 步骤:
- step1:设外函数 f ( x ) f(x) f(x),内函数 g ( x ) g(x) g(x),先把外函数式的 x x x换成 g ( x ) g(x) g(x)
- step2:然后绘制 g ( x ) g(x) g(x)图像,根据 g ( x ) g(x) g(x)图像对函数进行分段讨论。
- 例题:
- 设 f ( x ) = { x 2 , ∣ x ∣ ≤ 1 x , ∣ x ∣ > 1 , g ( x ) = { 1 + x , ∣ x ∣ ≤ 1 e x , ∣ x ∣ > 1 , 求 g [ f ( x ) ] 设f(x) = \begin{cases}x^2,&|x|\le1\\x,&|x|>1\end{cases},g(x) = \begin{cases}1+x,&|x|\le1\\e^x,&|x|>1\end{cases},求g[f(x)] 设f(x)={x2,x,∣x∣≤1∣x∣>1,g(x)={1+x,ex,∣x∣≤1∣x∣>1,求g[f(x)]
- 步骤:
-
外+复 -> 内
-
步骤:
- 设一个内函数,将内函数带入外函数中,求解。
-
例题:
- 已知 f ( x 2 − 1 ) = l n x 2 x 2 − 2 , f [ φ ( x ) ] = l n x , 求 φ ( x ) . f(x^2-1)= ln\frac{x^2}{x^2-2},f[\varphi(x)] = lnx,求\varphi(x). f(x2−1)=lnx2−2x2,f[φ(x)]=lnx,求φ(x).
-
-
-
函数的奇偶性:
- 函数的奇偶性求高阶导:
- f ( x ) = s i n x 1 + x 2 , 则求 f ( 8 ) ( 0 ) f(x) = \frac{sinx}{1+x^2},则求f^{(8)}(0) f(x)=1+x2sinx,则求f(8)(0)
- f ( x ) = e s i n x + e − s i n x , 则求 f ′ ′ ′ ( 0 ) f(x) = e^{sinx}+e^{-sinx},则求f^{'''}(0) f(x)=esinx+e−sinx,则求f′′′(0)
- 函数的奇偶性求高阶导:
第二节:数列及函数的极限
基本概念
- 数列:自变量取值为正整数的函数称为数列
- 数列极限: ∀ ε > 0 \forall \varepsilon >0 ∀ε>0,总存在N>0,当 n > N n>N n>N时,使 ∣ x n − a ∣ < ε |x_n -a|<\varepsilon ∣xn−a∣<ε,则称数列 { x n } \{x_n\} {xn}的极限为 a a a,记作: lim n → ∞ x n = a \lim\limits_{n \to \infty}{x_n} = a n→∞limxn=a,此时也称数列收敛,否则称数列发散。
- 函数极限:趋近于无穷的极限: ∀ ε > 0 \forall \varepsilon >0 ∀ε>0,当 ∣ x ∣ > X |x|>X ∣x∣>X时,总有 ∣ f ( x ) − A ∣ < ε , 则称 x → ∞ , f ( x ) → A |f(x)-A|<\varepsilon,则称x \to \infty,f(x) \to A ∣f(x)−A∣<ε,则称x→∞,f(x)→A,记 lim x → ∞ f ( x ) = A \lim\limits_{x \to \infty}{f(x)} = A x→∞limf(x)=A,此时也称函数收敛,否则称函数发散趋近于 x 0 x_0 x0的极限: ∀ ε \forall \varepsilon ∀ε,总存在 δ > 0 \delta>0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<∣x−x0∣<δ时,总有 ∣ f ( x ) − A ∣ < ε |f(x) - A|<\varepsilon ∣f(x)−A∣<ε,则称 x → x 0 x \to x_0 x→x0, f ( x ) → A f(x) \to A f(x)→A,记 lim x → x 0 f ( x ) = A \lim\limits_{x \to x_0}{f(x)} = A x→x0limf(x)=A,此时也称函数收敛,否则称函数发散
- 左极限: f ( x 0 − ) = f ( x 0 − 0 ) = l i m x → x 0 = A ⇔ ∀ ε > 0 , ∃ δ > 0 , 当 x ∈ ( x 0 − δ , x 0 ) 时,有 ∣ f ( x ) − A ∣ < ε . f(x_{0}^{-}) = f(x_0 -0) = lim_{x \to x_0} = A \Leftrightarrow \forall \varepsilon >0, \exists \delta >0,当x \in(x_0-\delta,x_0)时,有|f(x)-A| < \varepsilon. f(x0−)=f(x0−0)=limx→x0=A⇔∀ε>0,∃δ>0,当x∈(x0−δ,x0)时,有∣f(x)−A∣<ε.
- 右极限: f ( x 0 + ) = f ( x 0 + 0 ) = l i m x → x 0 = A ⇔ ∀ ε > 0 , ∃ δ > 0 , 当 x ∈ ( x 0 , x 0 + δ ) 时,有 ∣ f ( x ) − A ∣ < ε . f(x_{0}^{+}) = f(x_0 +0) = lim_{x \to x_0} = A \Leftrightarrow \forall \varepsilon >0, \exists \delta >0,当x \in(x_0,x_0+\delta)时,有|f(x)-A| < \varepsilon. f(x0+)=f(x0+0)=limx→x0=A⇔∀ε>0,∃δ>0,当x∈(x0,x0+δ)时,有∣f(x)−A∣<ε.
- 由极限的定义可知:极限存在和收敛的关系:极限存在则一定收敛,收敛则极限一定存在,可以说收敛和极限存在是一个意思,是等价的。
重要公式
- 重复不等式
- 0 < x < π 2 , s i n x < x < t a n x 0<x<\frac{\pi}{2},sinx <x <tanx 0<x<2π,sinx<x<tanx
- x 1 + x < l n ( 1 + x ) < x , x > 0 \frac{x}{1+x}<ln(1+x)<x,x>0 1+xx<ln(1+x)<x,x>0
- a > 0 , b > 0 , a + b ≥ 2 a b a>0,b>0,a+b\ge 2\sqrt{ab} a>0,b>0,a+b≥2ab
- x − 1 < [ x ] ≤ x , 1 x − 1 < [ 1 x ] ≤ 1 x x-1<[x]\le x,\frac{1}{x}-1<[\frac{1}{x}]\le\frac{1}{x} x−1<[x]≤x,x1−1<[x1]≤x1
- 均值不等式 ( x + y + z ) ≥ 3 x y z 3 , ( a , b , c > 0 ) (x+y+z) \ge 3\sqrt[3]{xyz},(a,b,c>0) (x+y+z)≥33xyz,(a,b,c>0)
- 辅助角公式中隐含着不等式: − a 2 + b 2 ≤ a s i n x + b c o s x ≤ a 2 + b 2 -\sqrt{a^2+b^2}\le asinx+bcosx\le\sqrt{a^2+b^2} −a2+b2≤asinx+bcosx≤a2+b2
- 重要极限
- lim x → ∞ ( a n + b n + c n ) 1 n = m a x { a , b , c } \lim\limits_{x\to \infty}{(a^n+b^n+c^n)^{\frac{1}{n}}} = max\{a,b,c\} x→∞lim(an+bn+cn)n1=max{a,b,c}
- lim n → ∞ a n = 1 ( a > 0 ) \lim\limits_{n\to \infty}\sqrt[n]{a} = 1(a>0) n→∞limna=1(a>0)
- lim n → ∞ n n = 1 \lim\limits_{n\to \infty}\sqrt[n]{n} = 1 n→∞limnn=1
- 等比数列求和公式: S n = n ( a 1 + a n ) 2 S_n = \frac{n(a_1+ a_n)}{2} Sn=2n(a1+an)
- 等差数列求和公式: S n = a 1 ( 1 − q n ) 1 − q S_n =\frac{a_1(1 - q^n)}{1-q} Sn=1−qa1(1−qn)
重要性质
-
极限存在 ⇔ \Leftrightarrow ⇔ 左右极限存在且相等,当遇到下面情况时会使用这个结论
- 求分段函数的分段点上的极限
- 求类似于 1 x − b \frac{1}{x-b} x−b1,求 x x x趋近于 b b b时的极限,分两种情况,一个是 x → b + x \to b^{+} x→b+时,原式等于 + ∞ +\infty +∞,一个是 x → b − x \to b^{-} x→b−,原式等于 − ∞ -\infty −∞
- 当 x → ∞ 时,分为 x → + ∞ 和 x → − ∞ 两种情况讨论 当x \to \infty时,分为x \to + \infty 和 x \to -\infty两种情况讨论 当x→∞时,分为x→+∞和x→−∞两种情况讨论
- 证明极限存在
-
洛必达能解决的问题: 0 0 或 ∞ ∞ \frac{0}{0}或\frac{\infty}{\infty} 00或∞∞,洛必达 lim f ( x ) g ( x ) \lim \frac{f(x)}{g(x)} limg(x)f(x),使用条件是去心邻域内 f ′ ( x ) f^{'}(x) f′(x)和 g ′ ( x ) g^{'}(x) g′(x)都存在,所以如果直接说二阶可导,只能用1次洛必达。
-
四则运算:四则运算必须两个式子极限都存在,并且分母的极限不等于0,才能拆。
- 若 l i m f ( x ) = A , l i m g ( x ) = B limf(x) = A,limg(x) = B limf(x)=A,limg(x)=B,则 l i m f ( x ) limf(x) limf(x)和 l i m g ( x ) limg(x) limg(x)的四则运算等于对应的 A A A和 B B B的四则运算
- 由于四则运算具有递归性,所以可以推广到有限个函数进行四则运算的场景,但是无限的不行:例如
lim n → + ∞ ( 1 n 2 + 2 n 2 + 3 n 2 + … … n n 2 ) \lim\limits_{n \to +\infty}{(\frac{1}{n^2}+\frac{2}{n^2}+\frac{3}{n^2}+……\frac{n}{n^2})} n→+∞lim(n21+n22+n23+……n2n)不能拆。- 推论1:如果 f ( x ) ≥ g ( x ) 则 A ≥ B f(x)\ge g(x)则A\ge B f(x)≥g(x)则A≥B
- 推论2: l i m [ f ( x ) ] n = [ l i m f ( x ) ] n lim[f(x)]^n = [limf(x)]^n lim[f(x)]n=[limf(x)]n
- 若 lim u → u 0 f ( u ) = A , lim x → x 0 φ ( x ) = u 0 , 且 φ ( x ) ≠ u 0 \lim\limits_{u \to u_0}f(u) = A, \lim\limits_{x \to x_0}\varphi(x) = u_0,且\varphi(x) \neq u_0 u→u0limf(u)=A,x→x0limφ(x)=u0,且φ(x)=u0,则 lim x → x 0 f [ φ ( x ) ] = A \lim\limits_{x \to x_0}f[\varphi(x)] = A x→x0limf[φ(x)]=A。例如: lim e f ( x ) = e lim f ( x ) \lim\limits e^{f(x)} =e^{\lim\limits f(x)} limef(x)=elimf(x)。
-
一般性质:
-
(唯一性)函数极限或者数列极限存在,则该极限值唯一
-
(有界性)收敛数列一定有界,函数极限存在,则函数局部有界(由极限的性质,推出函数的性质)。数列收敛能推出有界,有界推不出收敛,但是单调且有界可以推出收敛(这个将是证明数列极限存在的重要性质)
-
(保号性)函数极限的保号性(由极限的性质,推出函数的性质)
- 定理一: lim n → x 0 f ( x ) = A , 且 A > 0 ( A < 0 ) \lim\limits_{n \to x_0} f(x) = A,且A >0(A<0) n→x0limf(x)=A,且A>0(A<0)则存在在 x 0 x_0 x0的去心邻域内,使得有 f ( x ) > 0 ( f ( x ) < 0 ) f(x) >0(f(x)<0) f(x)>0(f(x)<0)
- 定理二:若在 x 0 x_0 x0的某去心邻域内, f ( x ) ≥ 0 ( f ( x ) ≤ 0 ) f(x) \geq 0 (f(x) \leq 0) f(x)≥0(f(x)≤0),且 l i m f ( x ) = A limf(x) = A limf(x)=A,则 A ≥ 0 ( A ≤ 0 ) A\geq 0(A\leq0) A≥0(A≤0)
-
-
列与子列遗传现象
- 列收敛。则任意子列收敛,且收敛于同一个数。
- 某一子列发散或两个数列极限不相等,则列发散
- 一个数列的所有的子数列的极限都存在(收敛)且相等,这时子数列极限就是数列的极限
-
证明函数或数列收敛(主要是数列)
- 单调有界数列必有极限
- 可以将数列变成函数,对函数进行洛必达,数列是函数的子数列,所以函数的极限就等于数列的极限
-
判定函数有界性:
- f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上有定义且连续,则 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上有界。
- f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)上有定义且连续,且 lim x → a + f ( x ) = A , lim x → b − = B \lim\limits_{x\to a^+}f(x) = A,\lim\limits_{x\to b^{-}} = B x→a+limf(x)=A,x→b−lim=B,则 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)上有界。
- 导数有界推函数有界: f ′ ( x ) f^{'}(x) f′(x)在 ( a , b ) (a,b) (a,b)内有界 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x)在 ( a , b ) (a,b) (a,b)内有界。(求导或积分不改变开区间敛散性)
-
夹逼准则:
-
函数型:准则: h ( x ) < = f ( x ) < = g ( x ) l i m h ( x ) = l i m g ( x ) = a } ⇒ l i m f ( x ) = a \left.\begin{matrix}h(x)<=f(x)<=g(x)\\limh(x) = limg(x) = a\\\end{matrix}\right\} \Rightarrow limf(x) = a h(x)<=f(x)<=g(x)limh(x)=limg(x)=a}⇒limf(x)=a
-
数列型:准则: y n ≤ x n ≤ z n ( n = 1 , 2 , 3 … … ) l i m y n = l i m z n = a } ⇒ l i m x n = a \left.\begin{matrix}y_n\le x_n\le z_n(n = 1,2,3……)\\limy_n =limz_n = a\\\end{matrix}\right\} \Rightarrow limx_n = a yn≤xn≤zn(n=1,2,3……)limyn=limzn=a}⇒limxn=a
-
解题思路
-
数列单调性的证明
-
method1:求导(很少见,因为数列题经常是一个递归式)
-
method2:作差: x n + 1 − x n x_{n+1}-x_{n} xn+1−xn与 0 0 0进行比较,大于 0 0 0递增,小于 0 0 0递减
-
method3:作商: x n + 1 x n \frac{x_{n+1}}{x_n} xnxn+1与 1 1 1进行比较
-
method4:数学归纳法
- 使用数学归纳法的条件:n = 1成立,有递归公式
- 数学归纳法步骤:
- 先证n = 1时成立
- 假设 n = k时成立
- 使用第二个条件去证明n = k+1时也成立
-
-
数列的有界性的证明
-
method1:不等式:
- 0 < x < π 2 , s i n x < x < t a n x 0<x<\frac{\pi}{2},sinx <x <tanx 0<x<2π,sinx<x<tanx
- 若 x > 0 x>0 x>0,则 x 1 + x < l n ( 1 + x ) < x \frac{x}{1+x}<ln(1+x)<x 1+xx<ln(1+x)<x
- 若 a > 0 , b > 0 , 则 a + b > = 2 a b a>0,b>0,则a+b>=2\sqrt{ab} a>0,b>0,则a+b>=2ab
- x − 1 < [ x ] < = x , 1 x − 1 < [ 1 x ] < = 1 x x-1<[x]<=x,\frac{1}{x}-1<[\frac{1}{x}]<=\frac{1}{x} x−1<[x]<=x,x1−1<[x1]<=x1
- 均值不等式 ( x + y + z ) > = 3 x y z 3 (x+y+z) >= 3\sqrt[3]{xyz} (x+y+z)>=33xyz
- 函数的有界性:一些初等函数本身的函数曲线
-
method2:数学归纳法:
- step1:极限为界,先用 lim n → ∞ x n = lim n → ∞ x n + 1 = A \lim\limits_{n \to \infty}x_n = \lim\limits_{n \to\infty}x_{n+1} = A n→∞limxn=n→∞limxn+1=A这个等式解出极限A,然后使用数学归纳法证明A就是这个数列的界。
- step2:然后使用数学归纳法,证明 x n < A x_n<A xn<A。
-
method3:常见的有界函数: s i n x , c o s x , a r c sinx,cosx,arc sinx,cosx,arc
-
method4:求极限:极限存在只能证明极限点邻域有界,一般还要配合单调性,才能证明整体有界,但是如果极限不存在可以确定无界,求极限的点一般有两种,无定义的点,区间端点
-
-
证明数列的极限存在(收敛)问题(单调有界数列必有极限)
- 步骤:
- step1:求递推数列的极限只有一个方法:就是用 lim n → ∞ x n = lim n → ∞ x n + 1 = A \lim\limits_{n \to \infty}x_n = \lim\limits_{n\to\infty}x_{n+1} = A n→∞limxn=n→∞limxn+1=A代入递归式解方程。求A,A就是数列极限,A如果有多个解,使用保号性的定理二舍去不符合条件的即可,保证极限的唯一性。
- step2:如果使用作差或作商求单调性,一般是先证有界性,再证单调性,因为一般证单调会用到有界性的界值。
- step3:如果使用数学归纳法求单调性,一般先求单调性还是先求有界性都可以。
- 例题:
- 设 x n + 1 = 1 2 ( x n + a x n ) ( n = 1 , 2 , 3 … … ) x_{n+1} = \frac{1}{2}(x_n+\frac{a}{x_n})(n = 1,2,3……) xn+1=21(xn+xna)(n=1,2,3……),且 x 1 > 0 , a > 0 x_1>0,a>0 x1>0,a>0,证明 lim x → ∞ x n \lim\limits_{x\to \infty}x_n x→∞limxn存在,并且求出极限。
- 数列 { a n } , x 1 = 2 , x 2 = 2 + 2 , x 3 = 2 + 2 + 2 , … … , \{a_n\},x_1 = \sqrt{2},x_2 = \sqrt{2+\sqrt{2}},x_3 = \sqrt{2+\sqrt{2+\sqrt{2}}},……, {an},x1=2,x2=2+2,x3=2+2+2,……,证明 lim n → ∞ x n \lim\limits_{n\to \infty}x_n n→∞limxn存在并求之
- 步骤:
-
证明数列发散(极限不存在)问题:
- 步骤:
- step1:某一子列发散或两个数列极限不相等,则数列发散
- step2:找两个子列,求极限,如果极限不相等则发散,或者找到一个发散的子列。
- 例题:
- 证明数列 x n = ( − 1 ) n + 1 ( n = 1 , 2 , … … ) x_n = (-1)^{n+1}(n = 1,2,……) xn=(−1)n+1(n=1,2,……)是发散的
- 讨论 lim x → + ∞ x s i n x \lim\limits_{x\to +\infty}xsinx x→+∞limxsinx
- 证明 lim x → 0 1 x 2 s i n 1 x \lim\limits_{x\to 0}\frac{1}{x^2}sin\frac{1}{x} x→0limx21sinx1不存在。
- 步骤:
-
给极限,问极值或者0点
- 步骤:
- 这时候可以考虑用保号性。
- 例题:
- 设 f ( 0 ) = 0 , lim x → 0 f ( x ) ∣ x ∣ = 2 , 问 f ( x ) 在 x = 0 时是否取得极值,是极大值还是极小值 设f(0) = 0,\lim\limits_{x\to 0}\frac{f(x)}{|x|} = 2,问f(x)在x = 0时是否取得极值,是极大值还是极小值 设f(0)=0,x→0lim∣x∣f(x)=2,问f(x)在x=0时是否取得极值,是极大值还是极小值
- 设 f ′ ( 1 ) = 0 , lim x → 1 f ′ ( x ) ( x − 1 ) 3 = 2 , 问 x = 1 是否为极值点 设f^{'}(1) = 0,\lim\limits_{x\to 1}\frac{f^{'}(x)}{(x-1)^3}=2,问x = 1是否为极值点 设f′(1)=0,x→1lim(x−1)3f′(x)=2,问x=1是否为极值点
- 步骤:
-
求n项和的极限:
- 方法:
-
直接求极限
- 等比数列求和公式: S n = n ( a 1 + a n ) 2 S_n = \frac{n(a_1+ a_n)}{2} Sn=2n(a1+an)
- 等差数列求和公式:$S_n =\frac{a_1(1-q^n)}{1-q} $
-
定积分定义
-
夹逼准则
-
step1:放缩分母,即 分子求和 最大分母 ⩽ n 项和 ⩽ 分子求和 最小分母 \frac{分子求和}{最大分母}\leqslant n项和\leqslant \frac{分子求和}{最小分母} 最大分母分子求和⩽n项和⩽最小分母分子求和
-
step2:求极限。
-
-
幂级数或者说泰勒公式。
-
- 例题:
- 求 lim x → 0 x [ 1 x ] \lim\limits_{x\to 0}x[\frac{1}{x}] x→0limx[x1]
- 求 lim n → ∞ n ( 1 n 2 + π + 1 n 2 + 2 π + … … + 1 n 2 + n π ) \lim\limits_{n\to \infty}n(\frac{1}{n^2+\pi}+\frac{1}{n^2+2\pi}+……+\frac{1}{n^2+n\pi}) n→∞limn(n2+π1+n2+2π1+……+n2+nπ1)
- 方法:
-
求函数的极限
- 方法:
- 夹逼准则:
- 可以使用抓大头的方式进行放缩,记住一个结论: lim x → ∞ ( a n + b n + c n ) 1 n = m a x { a , b , c } \lim\limits_{x\to \infty}{(a^n+b^n+c^n)^{\frac{1}{n}}} = max\{a,b,c\} x→∞lim(an+bn+cn)n1=max{a,b,c}
- 洛必达,洛必达法则的使用条件:
- s i n ∞ sin\infty sin∞或 c o s ∞ cos\infty cos∞不能用洛必达,例如: lim x → ∞ x + c o s x x \lim\limits_{x \to \infty}{\frac{x+cosx}{x}} x→∞limxx+cosx
- 无穷小比无穷小,无穷大比无穷大。
- 夹逼准则:
- 例题:
- 求 lim n → ∞ ( a n + b n + c n ) 1 n , ( a ≥ 0 , b ≥ 0 , c ≥ 0 ) 求\lim\limits_{n\to \infty}(a^n+b^n+c^n)^{\frac{1}{n}},(a\ge0,b\ge0,c\ge0) 求n→∞lim(an+bn+cn)n1,(a≥0,b≥0,c≥0)
- 求 lim n → ∞ 1 + x n + x 2 n 2 n n ( x > 0 ) 求\lim\limits_{n\to \infty}\sqrt[n]{1+x^n+\frac{x^{2n}}{2^n}}(x>0) 求n→∞limn1+xn+2nx2n(x>0)
- 方法:
第三节:无穷小与无穷大
无穷大和无穷小都是指极限值,不是实际的数值,也就是说只是一个趋势,它是描述函数的一种状态。
基本概念:
-
无穷小:若 x → x 0 x \to x_0 x→x0(或 x → ∞ x\to\infty x→∞)时,函数 f ( x ) → 0 f(x)\to 0 f(x)→0,则称函数 f ( x ) f(x) f(x)的 x → x 0 ( 或 x → ∞ ) x\to x_0(或x\to \infty) x→x0(或x→∞)时的无穷小
-
设 α , β 设\alpha,\beta 设α,β是同一变化过程中的无穷小:
- 若 lim β α = 0 \lim\frac{\beta}{\alpha} = 0 limαβ=0,则称 β \beta β是比 α \alpha α高阶的无穷小,记作 β = o ( α ) \beta = o(\alpha) β=o(α)
- 若 lim β α = ∞ \lim\frac{\beta}{\alpha} = \infty limαβ=∞,则称 β \beta β是比 α \alpha α低阶的无穷小
- 若 lim β α k = C ≠ 0 \lim\frac{\beta}{\alpha^k} = C\neq 0 limαkβ=C=0,则称 β \beta β是 α \alpha α的 k k k阶的无穷小
- 若 lim β α = C ≠ 0 \lim\frac{\beta}{\alpha} = C\neq 0 limαβ=C=0,则称 β \beta β是 α \alpha α的同阶的无穷小
- 若 lim β α = 1 \lim\frac{\beta}{\alpha} = 1 limαβ=1,则称 β \beta β是 α \alpha α的等价无穷小;记作 α ∼ β \alpha \sim ~\beta α∼ β
-
无穷大:任给 M > 0 M>0 M>0,总存在 δ > 0 \delta>0 δ>0(正数 X X X),使对一切满足不等式 0 < ∣ x − x 0 ∣ < δ ( x > X ) 0<|x-x_0|<\delta(x>X) 0<∣x−x0∣<δ(x>X)的 x x x,总有 ∣ f ( x ) ∣ > M |f(x)|>M ∣f(x)∣>M,则称函数 f ( x ) f(x) f(x)当 x → x 0 ( 或 x → ∞ ) x\to x_0(或x\to \infty) x→x0(或x→∞)时的无穷大,记作 lim x → x 0 f ( x ) = ∞ ( lim x → ∞ f ( x ) = ∞ ) \lim\limits_{x\to x_0}f(x) = \infty(\lim\limits_{x\to \infty}f(x) = \infty) x→x0limf(x)=∞(x→∞limf(x)=∞),简单的说就是 ∀ M > 0 , ∃ x 0 \forall M>0,\exist x_0 ∀M>0,∃x0的去心邻域内 ∣ f ( x 0 ) ∣ > M |f(x_0)|>M ∣f(x0)∣>M
-
有界: ∃ M > 0 , ∀ x 1 , 使得 ∣ f ( x 1 ) ∣ < M \exist M>0,\forall x_1,使得|f(x_1)|<M ∃M>0,∀x1,使得∣f(x1)∣<M
-
函数为无穷大,必定无界,但反之不真,例如 f ( x ) = x s i n x f(x) = xsinx f(x)=xsinx是无界函数,但不是无穷大
重要公式:
-
无穷小阶数的确定:
- o ( x m ) ⋅ x n = o ( x m + n ) o(x^m)\cdot x^n = o(x^{m+n}) o(xm)⋅xn=o(xm+n)
- o ( x m ) ⋅ o ( x n ) = o ( x m + n ) o(x^m)\cdot o(x^n) = o(x^{m+n}) o(xm)⋅o(xn)=o(xm+n)
- o ( x m ) + o ( x n ) = o ( x m i n { m , n } ) o(x^m) + o(x^n) = o(x^{min\{m,n\}}) o(xm)+o(xn)=o(xmin{m,n})
- x m ± x n ∼ x m i n { m , n } x^m \pm x^n \sim x^{min\{m,n\}} xm±xn∼xmin{m,n}
-
无穷大的比较
- x → + ∞ 时, l n x < < x < < e x x \to +\infty时,lnx<<x<<e^x x→+∞时,lnx<<x<<ex
- x → 0 + 时, ∣ l n x ∣ < < ∣ 1 x ∣ x\to 0^+时,|lnx|<<|\frac{1}{x}| x→0+时,∣lnx∣<<∣x1∣
- 对数 < < << <<幂函数 < < << <<指数
-
重要极限:
- lim x → 0 s i n x x = 1 \lim\limits_{x\to 0}\frac{sinx}{x} = 1 x→0limxsinx=1
- lim x → 0 ( 1 + x ) 1 x = e , l i m x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x \to 0}{(1+x)^\frac{1}{x}} = e,lim_{x \to \infty}{(1+\frac{1}{x})^x} = e x→0lim(1+x)x1=e,limx→∞(1+x1)x=e
- lim x → ∞ a m x m + a m − 1 x m − 1 + … … + a 1 x + a 0 b n x n + b n − 1 x n − 1 + … … + b 1 x + b 0 = { ∞ , m > n a m b n , m = n 0 , m < n \lim\limits_{x \to \infty}{\frac{a_mx^m + a_{m-1}x^{m-1}+……+a_1x + a_0}{b_nx^n + b_{n-1}x^{n-1}+……+b_1x + b_0}} = \begin{cases}\infty,&m>n\\\frac{a_m}{b_n},&m = n\\0,&m<n\end{cases} x→∞limbnxn+bn−1xn−1+……+b1x+b0amxm+am−1xm−1+……+a1x+a0=⎩ ⎨ ⎧∞,bnam,0,m>nm=nm<n
- lim x → 0 a m x m + a m − 1 x m − 1 + … … + a 1 x + a 0 b n x n + b n − 1 x n − 1 + … … + b 1 x + b 0 = { 0 , m > n a m b n , m = n ∞ , m < n \lim\limits_{x \to 0}{\frac{a_mx^m + a_{m-1}x^{m-1}+……+a_1x + a_0}{b_nx^n + b_{n-1}x^{n-1}+……+b_1x + b_0}} = \begin{cases}0,&m>n\\\frac{a_m}{b_n},&m = n\\\infty,&m<n\end{cases} x→0limbnxn+bn−1xn−1+……+b1x+b0amxm+am−1xm−1+……+a1x+a0=⎩ ⎨ ⎧0,bnam,∞,m>nm=nm<n
-
扩展公式: ( a + b ) n = C n 0 a n b 0 + C n 1 a n − 1 b 1 + C n 2 a n − 2 b 2 + … … C n n a 0 b n (a+b)^n = C_n^0a^nb^0+C_n^1a^{n-1}b^1+C_n^2a^{n-2}b^2+……C_n^na^0b^n (a+b)n=Cn0anb0+Cn1an−1b1+Cn2an−2b2+……Cnna0bn
重要性质:
-
无穷小与无穷大的关系:在自变量的同一变化过程中,若$f(x) 为无穷大,则 为无穷大,则 为无穷大,则\frac{1}{f(x)} 为无穷小,若 为无穷小,若 为无穷小,若f(x) 为无穷小,且 为无穷小,且 为无穷小,且f(x) \neq 0 , 则 ,则 ,则\frac{1}{f(x)}$为无穷大,根据此定理,关于无穷大的问题都可以转化为无穷小来讨论
-
无穷小性质:
-
一般性质
- 无穷小 + + +无穷小 = = =无穷小
- 无穷小 × \times × 无穷小 = = = 无穷小
- 无穷小 × \times × 有界 = = =无穷小:一般极限中出现 s i n ∞ , c o s ∞ sin\infty,cos\infty sin∞,cos∞时可以考虑使用这个性质
-
替换性质
- 只需要记住等价无穷小有传递性就行了: lim α = lim β = l i m γ = 0 , { α ∼ α α ∼ β , 则 β ∼ α α ∼ β , β ∼ γ , 则 α ∼ γ \lim\alpha = \lim\beta = lim \gamma = 0,\begin{cases}\alpha \sim \alpha\\\alpha \sim \beta,则\beta \sim \alpha\\\alpha \sim \beta,\beta \sim \gamma,则\alpha \sim \gamma\end{cases} limα=limβ=limγ=0,⎩ ⎨ ⎧α∼αα∼β,则β∼αα∼β,β∼γ,则α∼γ
- 等价替换:
α
∼
α
1
,
β
∼
β
1
,
且
l
i
m
β
1
α
1
\alpha \sim \alpha_1,\beta \sim \beta_1,且lim\frac{\beta_1}{\alpha_1}
α∼α1,β∼β1,且limα1β1存在,则
l
i
m
β
α
=
l
i
m
β
1
α
1
lim\frac{\beta}{\alpha} = lim\frac{\beta_1}{\alpha_1}
limαβ=limα1β1,注意,必须满足:
l
i
m
β
1
α
1
lim\frac{\beta_1}{\alpha_1}
limα1β1存在,这就是为什么下面替换条件的中相加减必须满足精度的原因
- 替换条件:
- 相乘除:直接替换
- 相加减:满足精度(所谓满足精度,意思是替换后,分子次数大于等于分母次数,或者分子是分母的高阶或同阶或等价无穷小)
- 注意:类似这种 lim x → 0 [ l n ( x + 1 ) x ] 1 x 2 \lim\limits_{x \to 0}{[\frac{ln(x+1)}{x}]^{\frac{1}{x^2}}} x→0lim[xln(x+1)]x21,中括号里的 l n ( x + 1 ) ln(x+1) ln(x+1)是不能替换成 x x x的,因为必须是整体是乘除或加减才能替换。类似的还有 lim x → + ∞ e l n ( e l n x x − 1 ) l n x \lim\limits_{x\to +\infty}e^{\frac{ln(e^{\frac{lnx}{x}}-1)}{lnx}} x→+∞limelnxln(exlnx−1),其中的 e l n x x − 1 e^{\frac{lnx}{x}}-1 exlnx−1不能换成 l n x x \frac{lnx}{x} xlnx
- 替换条件:
- 极限
lim
x
→
x
0
f
(
x
)
\lim\limits_{x \to x_0}f(x)
x→x0limf(x)与邻域函数值
f
(
x
)
f(x)
f(x)之间的关系:
lim
x
→
x
0
f
(
x
)
=
A
⇔
f
(
x
)
=
A
+
α
其中
α
为
x
→
x
0
\lim\limits_{x \to x_0}f(x) = A \Leftrightarrow f(x) = A + \alpha其中\alpha为x \to x_0
x→x0limf(x)=A⇔f(x)=A+α其中α为x→x0时的无穷小量,可以用于去极限号,俗称’脱帽’。
- 例题:
- 已知 lim x → 0 x f ( x ) + s i n x x 3 = 0 , 求 lim x → 0 f ( x ) + 1 x 2 \lim\limits_{x\to 0}\frac{xf(x)+sinx}{x^3} = 0,求\lim\limits_{x\to 0}\frac{f(x)+1}{x^2} x→0limx3xf(x)+sinx=0,求x→0limx2f(x)+1
- 已知 lim x → 0 l n ( 1 + 2 x ) − 2 x f ( x ) x 2 = 0 , 求 lim x → 0 1 − f ( x ) x \lim\limits_{x\to 0}\frac{ln(1+2x)-2xf(x)}{x^2} = 0,求\lim\limits_{x\to 0}\frac{1-f(x)}{x} x→0limx2ln(1+2x)−2xf(x)=0,求x→0limx1−f(x)
- 例题:
-
常用的等价无穷小:
-
x ∼ s i n x ∼ t a n x ∼ a r c s i n x ∼ a r c t a n x ∼ l n ( 1 + x ) ∼ e x − 1 x \sim sinx \sim tanx \sim arcsinx \sim arctanx \sim ln(1+x) \sim e^x -1 x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1
-
1 − c o s x ∼ 1 2 x 2 ∼ x − l n ( 1 + x ) ∼ e t − 1 − t 1 -cosx \sim \frac{1}{2}x^2 \sim x - ln(1+x)\sim e^t-1-t 1−cosx∼21x2∼x−ln(1+x)∼et−1−t
-
( 1 + x ) α − 1 ∼ α x (1 + x)^\alpha -1 \sim \alpha x (1+x)α−1∼αx
-
lim x → 0 ( 1 + x ) 1 x = e , l i m x → ∞ ( 1 + 1 x ) x = e \lim_{x \to 0}{(1+x)^\frac{1}{x}} = e,lim_{x \to \infty}{(1+\frac{1}{x})^x} = e limx→0(1+x)x1=e,limx→∞(1+x1)x=e
-
x + l n ( 1 + x ) ∼ 2 x x+ln(1+x) \sim 2x x+ln(1+x)∼2x
-
扩展: 1 − c o s k x ∼ k 2 x 2 , a x − 1 ∼ ( ln a ) x 扩展:1-cos^kx \sim \frac{k}{2}x^2,a^x-1 \sim (\ln{a}) x 扩展:1−coskx∼2kx2,ax−1∼(lna)x
-
x , s i n x , t a n x , a r c s i n x , a r c t a n x x,sinx,tanx,arcsinx,arctanx x,sinx,tanx,arcsinx,arctanx任意两个之差与 x 3 x^3 x3同阶,每个间隔为 x 3 6 \frac{x^3}{6} 6x3
-
-
未定式(极限的反问)重要性质:
- 已知 lim f ( x ) g ( x ) = A , 若 lim g ( x ) = 0 , 则 lim f ( x ) = 0 已知\lim\frac{f(x)}{g(x)} = A,若\lim{g(x)} = 0,则\lim{f(x)} = 0 已知limg(x)f(x)=A,若limg(x)=0,则limf(x)=0
- 已知 lim f ( x ) g ( x ) = A ( A ≠ 0 ) , 若 lim f ( x ) = 0 , 则 lim g ( x ) = 0 已知\lim\frac{f(x)}{g(x)} = A(A \neq 0),若\lim{f(x)} = 0,则\lim{g(x)} = 0 已知limg(x)f(x)=A(A=0),若limf(x)=0,则limg(x)=0
- 已知 lim [ f ( x ) − g ( x ) ] = A , 若 lim f ( x ) = ∞ , 则 lim g ( x ) = ∞ 已知\lim{[f(x)-g(x)]} = A,若\lim{f(x)} = \infty,则\lim{g(x)} = \infty 已知lim[f(x)−g(x)]=A,若limf(x)=∞,则limg(x)=∞
- 已知 lim [ f ( x ) ⋅ g ( x ) ] = A , 若 lim f ( x ) = ∞ , 则 lim g ( x ) = 0 已知\lim{[f(x)\cdot g(x)]} = A,若\lim{f(x)} = \infty,则\lim{g(x)} = 0 已知lim[f(x)⋅g(x)]=A,若limf(x)=∞,则limg(x)=0
-
解题思路:
-
等价无穷小的替换求极限:
- 求解极限问题方法:夹逼准则(经常和定积分的性质连用),洛必达,等价无穷小替换,加项减项,麦克克劳林公式,拉格朗日中值定理,拆项。
-
u ( x ) v ( x ) u(x)^{v(x)} u(x)v(x)型:指对化
-
Δ − 1 \Delta-1 Δ−1型,一般用下面几个等价无穷小替换
- e Δ − 1 ∼ Δ e^\Delta -1 \sim \Delta eΔ−1∼Δ
- ( 1 + Δ ) α − 1 ∼ a Δ (1+\Delta)^\alpha -1 \sim a\Delta (1+Δ)α−1∼aΔ
- 适合 Δ \Delta Δ为多项相乘的形式,这样就可以化为和的形式了: Δ − 1 ∼ l n Δ \Delta -1\sim ln\Delta Δ−1∼lnΔ
-
e Δ 1 − e Δ 2 e^{\Delta_1}-e^{\Delta_2} eΔ1−eΔ2型,提取公因式化成: e Δ 2 ( e Δ 1 − Δ 2 − 1 ) e^{\Delta_2}(e^{\Delta_1-\Delta_2}-1) eΔ2(eΔ1−Δ2−1),然后就可以用 e Δ − 1 ∼ Δ e^\Delta -1 \sim \Delta eΔ−1∼Δ求解
-
出现二次根号 Δ 2 \sqrt[2]\Delta 2Δ,有理化: ( a + b ) ( a − b ) = a − b (\sqrt{a} + \sqrt{b})(\sqrt{a}-\sqrt{b}) = a - b (a+b)(a−b)=a−b
-
出现三次根号 Δ 3 \sqrt[3]\Delta 3Δ,使用 ( 1 + Δ ) α − 1 ∼ a Δ (1+\Delta)^\alpha -1 \sim a\Delta (1+Δ)α−1∼aΔ
-
出现 Δ 1 2 − Δ 1 2 \Delta_1^2-\Delta_1^2 Δ12−Δ12趋近于0时,考虑使用 ( Δ 1 − Δ 2 ) ( Δ 1 + Δ 2 ) (\Delta_1-\Delta_2)(\Delta_1+\Delta_2) (Δ1−Δ2)(Δ1+Δ2)
-
∞ ⋅ 0 \infty\cdot 0 ∞⋅0型:简单因式(幂函数)取倒数,换成 0 0 或者 ∞ ∞ \frac{0}{0}或者\frac{\infty}{\infty} 00或者∞∞
-
∞ − ∞ \infty - \infty ∞−∞型:通分(适合有分母的),有理化(适合有根号),提取公因式,倒代换(适合 x → ∞ x\to \infty x→∞,把 x x x换成 1 t \frac{1}{t} t1,求 t → 0 t\to 0 t→0时的极限)
-
拆项:将能先算出来的先拆分出来计算。
-
若极限中出现定积分,使用积分中值定理去积分号,若极限中出现不定积分,使用洛必达去积分号。
-
- 例题:
- lim x → 0 ( 1 + x ) 1 x − e x \lim\limits_{x\to 0}\frac{(1+x)^{\frac{1}{x}}-e}{x} x→0limx(1+x)x1−e
- lim x → 0 1 − c o s x 3 x 2 \lim\limits_{x\to 0}\frac{1-\sqrt[3]{cosx}}{x^2} x→0limx21−3cosx
- lim x → 0 1 − c o s x x 2 \lim\limits_{x\to 0}\frac{1-\sqrt{cosx}}{x^2} x→0limx21−cosx
- lim x → 0 e x 2 − c o s x x l n ( 1 + x ) \lim\limits_{x\to 0}\frac{e^{x^2}-cosx}{xln(1+x)} x→0limxln(1+x)ex2−cosx
- lim x → 0 ( 1 + t a n x 1 + s i n x ) 1 x 3 \lim\limits_{x\to 0}(\frac{1+tanx}{1+sinx})^{\frac{1}{x^3}} x→0lim(1+sinx1+tanx)x31
- lim x → 0 + ( s i n x ) x \lim\limits_{x\to 0^{+}}(sinx)^x x→0+lim(sinx)x
- lim x → + ∞ x 1 x \lim\limits_{x\to +\infty}x^{\frac{1}{x}} x→+∞limxx1
- lim x → ∞ x [ ( 1 + 1 x ) x − e ] \lim\limits_{x\to \infty}x[(1+\frac{1}{x})^x-e] x→∞limx[(1+x1)x−e]
- lim x → 0 + x n l n x ( n > 0 ) \lim\limits_{x\to 0^{+}}x^nlnx(n>0) x→0+limxnlnx(n>0)
- lim x → + ∞ 3 x 2 + 2 x + 1 a r c t a n 1 2 x \lim\limits_{x \to +\infty} \frac{3x^2+2}{x+1}arctan\frac{1}{2x} x→+∞limx+13x2+2arctan2x1
- lim x → − ∞ x + 1 x 2 − x + 1 + x 2 + x + 1 \lim\limits_{x\to -\infty}\frac{x+1}{\sqrt{x^2-x+1}+\sqrt{x^2+x+1}} x→−∞limx2−x+1+x2+x+1x+1
- lim x → ∞ ( x 3 + 3 x 2 3 − x 4 − 2 x 3 4 ) \lim\limits_{x\to \infty}(\sqrt[3]{x^3+3x^2}-\sqrt[4]{x^4-2x^3}) x→∞lim(3x3+3x2−4x4−2x3)(tip:出现有高次幂,使用倒带换)
- lim x → ∞ l n ( x 4 + 3 x 2 + 2 ) l n ( x 2 + 5 x + 2 ) \lim\limits_{x\to \infty}\frac{ln(x^4+3x^2+2)}{ln(x^2+5x+2)} x→∞limln(x2+5x+2)ln(x4+3x2+2)(洛必达,抓大头)
- lim x → π 2 ( s e c x − t a n x ) \lim\limits_{x\to \frac{\pi}{2}}(secx-tanx) x→2πlim(secx−tanx)(通分)
- lim x → + ∞ ( x 2 + 4 x + 8 − x ) \lim\limits_{x\to +\infty}(\sqrt{x^2+4x+8}-x) x→+∞lim(x2+4x+8−x)(有理化)
- lim x → + ∞ x 3 + 4 x 2 + 1 3 − x \lim\limits_{x\to +\infty}\sqrt[3]{x^3+4x^2+1}-x x→+∞lim3x3+4x2+1−x(提取公因式,变成 ∞ ⋅ 0 型 \infty\cdot 0型 ∞⋅0型或者使用倒代换)
- lim x → 0 1 + x s i n x − c o s 3 x x ( e 5 x − 1 ) \lim\limits_{x\to 0}\frac{\sqrt{1+xsinx}-cos3x}{x(e^{5x}-1)} x→0limx(e5x−1)1+xsinx−cos3x
- lim n → ∞ ∫ 0 1 e x s i n n x 1 + e x d x \lim\limits_{n\to \infty}\int^1_0\frac{e^xsin^nx}{1+e^x}dx n→∞lim∫011+exexsinnxdx
- lim n → ∞ ∫ 0 1 x n 1 + x 2 d x \lim\limits_{n\to \infty}\int^1_0\frac{x^n}{1+x^2}dx n→∞lim∫011+x2xndx
- 求解极限问题方法:夹逼准则(经常和定积分的性质连用),洛必达,等价无穷小替换,加项减项,麦克克劳林公式,拉格朗日中值定理,拆项。
-
未定式的判断:
-
整体极限(由题给出) + + + 部分极限(自己找) → \to → 另一部分的极限
-
部分极限的寻找方法
- 先找不带参数的
- 如果都带参数,找极限确定的(参数不会影响极限的)
-
例题:
- lim x → 0 s i n x e x − a ( c o s x − b ) = 5 , 求 a , b \lim\limits_{x\to 0}\frac{sinx}{e^x-a}(cosx-b) = 5,求a,b x→0limex−asinx(cosx−b)=5,求a,b
- lim x → − 1 ( 1 a x + 1 − 3 x 3 + 1 ) = b ,求 a , b \lim\limits_{x\to-1}(\frac{1}{ax+1}-\frac{3}{x^3+1}) = b,求a,b x→−1lim(ax+11−x3+13)=b,求a,b
- 已知 a > 0 , lim x → 0 x 2 ( b − c o s x ) a + x 2 = 1 , 求 a , b 已知a>0,\lim\limits_{x\to 0}\frac{x^2}{(b-cosx)\sqrt{a+x^2}} = 1,求a,b 已知a>0,x→0lim(b−cosx)a+x2x2=1,求a,b
-
-
无穷小比较
-
方法:
- method1:让两个式子作商: lim x → 0 β α = { 0 β 高 , α 低 ∞ β 低, α 高 c ≠ 0 β , α 同阶 \lim\limits_{x\to 0}\frac{\beta}{\alpha} = \begin{cases}0&\beta高,\alpha低\\\infty&\beta低,\alpha高\\c\neq 0&\beta,\alpha同阶\end{cases} x→0limαβ=⎩ ⎨ ⎧0∞c=0β高,α低β低,α高β,α同阶
- method2:麦克劳林展开,展开到系数不为零为止。
- method3:如果所给函数是一个抽象函数,用泰勒公式展开
-
例题:
-
x → 0 + x\to 0^+ x→0+,下列阶数最高的是()
A. l n ( 1 + x 2 ) − x 2 ln(1+x^2)-x^2 ln(1+x2)−x2,B. 1 + x 2 + c o s x − 2 \sqrt{1+x^2}+cosx-2 1+x2+cosx−2,C. ∫ 0 s i n 2 x l n ( 1 + t 2 ) d t \int^{sin^2x}_0ln(1+t^2)dt ∫0sin2xln(1+t2)dt,D. e x 2 − 1 − x 2 e^{x^2}-1-x^2 ex2−1−x2
-
-
第四节:函数的连续性与间断点(极限的应用)
基本概念:
-
连续性:
-
f ( x ) f(x) f(x)在 x 0 x_0 x0处连续的定义:设函数 y = f ( x ) y = f(x) y=f(x)在的某邻域内有定义,且 lim x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x \to x_0}{f(x)} = f(x_0) x→x0limf(x)=f(x0),则称函数 f ( x ) f(x) f(x)在 x 0 x_0 x0连续。注意需要满足三个条件: f ( x ) f(x) f(x)在点 x 0 x_0 x0有定义,极限 lim x → x 0 f ( x ) \lim\limits_{x \to x_0}{f(x)} x→x0limf(x)存在, lim x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x \to x_0}{f(x)} = f(x_0) x→x0limf(x)=f(x0)
-
f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内连续的定义:设函数 y = f ( x ) y = f(x) y=f(x)在 ( a , b ) (a,b) (a,b)内有定义,且 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内的任一点都连续,则称函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内连续
-
f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]内连续的定义:设函数 y = f ( x ) y = f(x) y=f(x)在 ( a , b ) (a,b) (a,b)内有定义,若 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内的任一点都连续,且 f ( x ) f(x) f(x)在 a a a点右连续,在 b b b点左连续,则称函数 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]内连续,记 f ( x ) ∈ C [ a , b ] 或 f ( x ) ∈ C 1 [ a , b ] f(x) \in C[a,b]或f(x)\in C_1[a,b] f(x)∈C[a,b]或f(x)∈C1[a,b]
-
上面两条可以总结为初等函数在其定义域内都连续
-
-
间断点:
- 函数间断点的定义:设
f
(
x
)
f(x)
f(x)在点
x
0
x_0
x0的某去心邻域内有定义,则下列情形之一函数
f
(
x
)
f(x)
f(x)在点
x
0
x_0
x0不连续,
x
0
x_0
x0为间断点
- 函数 f ( x ) f(x) f(x)在 x 0 x_0 x0无定义
- 函数 f ( x ) f(x) f(x)在 x 0 x_0 x0虽然有定义,但 lim x → x 0 f ( x ) \lim_{x \to x_0}{f(x)} limx→x0f(x)不存在
- 函数 f ( x ) f(x) f(x)在 x 0 x_0 x0虽然有定义,且 lim x → x 0 f ( x ) \lim_{x \to x_0}{f(x)} limx→x0f(x)存在,但 lim x → x 0 f ( x ) ≠ f ( x 0 ) \lim_{x \to x_0}{f(x)} \neq f(x_0) limx→x0f(x)=f(x0)
- 间断点的分类:
- 第一类间断点:
f
(
x
0
+
0
)
=
f
(
x
0
−
0
)
f(x_0 + 0) = f(x_0-0)
f(x0+0)=f(x0−0)均存在:
- 若 f ( x 0 + 0 ) = f ( x 0 − 0 ) f(x_0+0) = f(x_0-0) f(x0+0)=f(x0−0),称 x 0 x_0 x0为可去间断点。
- 若 f ( x 0 + 0 ) ≠ f ( x 0 − 0 ) f(x_0+0) \neq f(x_0-0) f(x0+0)=f(x0−0),称 x 0 x_0 x0为跳跃间断点。
- 第二类间断点:$f(x_0 + 0) $及
f
(
x
0
−
0
)
f(x_0-0)
f(x0−0)至少一个不存在:
- 若其中一个为 ∞ \infty ∞,称 x 0 x_0 x0为无穷间断点
- 若其中一个为震荡,称 x 0 x_0 x0为震荡间断点,例如 y = s i n 1 x y = sin{\frac{1}{x}} y=sinx1,当 x = 0 x = 0 x=0就是震荡间断点
- 第一类间断点:
f
(
x
0
+
0
)
=
f
(
x
0
−
0
)
f(x_0 + 0) = f(x_0-0)
f(x0+0)=f(x0−0)均存在:
- 函数间断点的定义:设
f
(
x
)
f(x)
f(x)在点
x
0
x_0
x0的某去心邻域内有定义,则下列情形之一函数
f
(
x
)
f(x)
f(x)在点
x
0
x_0
x0不连续,
x
0
x_0
x0为间断点
重要性质:
-
f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)∈C[a,b]的性质:
- 定理一:若函数
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]内连续,则
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上有界,且一定有最大值和最小值
- 若区间是开区间,定理不一定成立
- 若区间内有间断点,定理不一定成立
- 定理二(零点定理):设函数
f
(
x
)
f(x)
f(x)在闭区间
[
a
,
b
]
[a,b]
[a,b]上连续,且
f
(
a
)
f(a)
f(a)与
f
(
b
)
f(b)
f(b)异号,那么在开区间内至少有函数
f
(
x
)
f(x)
f(x)的一个零点
- 使用条件: f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续, f ( a ) f(a) f(a)与 f ( b ) f(b) f(b)异号
- 可以解决的问题:
- 证明函数零点或方程有根:如果要证有且只有一个根,还要证单调性(求导)。
- 证明: f ( σ ) = 0 f(\sigma) = 0 f(σ)=0或 f ( σ ) = g ( σ ) f(\sigma) = g(\sigma) f(σ)=g(σ):证明 f ( σ ) = g ( σ ) f(\sigma) = g(\sigma) f(σ)=g(σ)的步骤:先全部移到左边化为 f ( σ ) − g ( σ ) = 0 f(\sigma) - g(\sigma) = 0 f(σ)−g(σ)=0,然后 σ → x , 令 h ( x ) = g ( x ) − g ( x ) \sigma \to x,令h(x) = g(x) -g(x) σ→x,令h(x)=g(x)−g(x)
- 定理三(介值定理):设函数
f
(
x
)
f(x)
f(x)在闭区间
[
a
,
b
]
[a,b]
[a,b]上连续,且在这区间的端点取不同的函数值,
f
(
a
)
=
m
,
f
(
b
)
=
M
f(a) = m,f(b) = M
f(a)=m,f(b)=M,那么,对于
m
m
m与
M
M
M之间的任意一个数
C
C
C,在开区间
(
a
,
b
)
(a,b)
(a,b)至少有一点
ξ
\xi
ξ,使得
f
(
ξ
)
=
C
f(\xi) = C
f(ξ)=C.
- 使用条件: f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续
- 定理一:若函数
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]内连续,则
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上有界,且一定有最大值和最小值
-
判断连续性就这一个方法:函数连续 ⇔ lim x → x 0 f ( x ) = f ( x 0 ) \Leftrightarrow \lim\limits_{x \to x_0}{f(x)}=f(x_0) ⇔x→x0limf(x)=f(x0)
解题思路:
-
给连续性求函数参数
- 使用 lim x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x \to x_0}{f(x)} = f(x_0) x→x0limf(x)=f(x0)列等式。
- 例题:
- 设 f ( x ) = lim n → ∞ x 2 n − 1 + a x 2 + b x x 2 n + 1 f(x) = \lim\limits_{n\to \infty}\frac{x^{2n-1}+ax^2+bx}{x^{2n}+1} f(x)=n→∞limx2n+1x2n−1+ax2+bx是连续函数,求 a , b a,b a,b
-
判断间断点:
- 步骤:
- step1:找间断点:
- 无定义的点。
- 分段函数的分段点可能是间断点,具体要看 lim x → x 0 f ( x ) \lim\limits_{x \to x_0}{f(x)} x→x0limf(x) 是否等于$ f(x_0)$
- 注意找间断点的时候不能化简,但是判断间断点类型时求导的时候可以化简。例如: x + 1 x 2 − 1 \frac{x+1}{x^2-1} x2−1x+1找简短点时不能化简为 1 x − 1 \frac{1}{x-1} x−11,化简前间断点是 1 1 1和 − 1 -1 −1,化简后间断点只有一个 1 1 1
- step2:判断间断点的类型,先求 f ( x 0 + 0 ) f(x_0 + 0) f(x0+0)和 f ( x 0 − 0 ) f(x_0-0) f(x0−0),根据这两个值,判断属于哪种间断点
- step1:找间断点:
- 例题:
- 求函数 f ( x ) = e 1 x ⋅ x + 1 x 2 − 1 f(x) = e^{\frac{1}{x}}\cdot\frac{x+1}{x^2-1} f(x)=ex1⋅x2−1x+1间断点并判断类型
- 步骤:
-
使用介质定理求抽象函数的值
- 方法:
- 当发现条件不够使用介质定理时,可以设一个最小值和一个最大值,这个思想也可以用于其他定理的运用中,当我们想用某个定理或公式解决一个问题时,发现条件不够,我们可以设一些值出来。
- 出现 k 1 f ( x 1 ) + k 2 f ( x 2 ) + … … k_1f(x_1)+k_2f(x_2)+…… k1f(x1)+k2f(x2)+……可以考虑使用最值+介值
- 例题:
- f ( x ) ∈ C [ 0 , 2 ] , f ( 0 ) + 2 f ( 1 ) + 3 f ( 2 ) = 12 , 证明 ∃ ξ ∈ [ 0 , 2 ] , 使得 f ( ξ ) = 2. f(x)\in C[0,2],f(0)+2f(1)+3f(2) = 12,证明\exist\xi \in [0,2],使得f(\xi) = 2. f(x)∈C[0,2],f(0)+2f(1)+3f(2)=12,证明∃ξ∈[0,2],使得f(ξ)=2.
- 方法: