第2章:导数与微分

第二章:导数与微分

第一节:导数的概念

导数其实表示的是一种极限,根据导数的定义可以把导数题转换称极限题去做。斜率不是导数,斜率只是导数的一种表现形式

基本概念
  1. f ( x ) f(x) f(x) x 0 x_0 x0处可导的定义: y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0的某领域内有定义,若 lim ⁡ Δ → 0 Δ y Δ x = lim ⁡ Δ → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim_{\Delta \to 0}{\frac{\Delta y}{\Delta x}} = \lim_{\Delta \to 0}{\frac{f(x_0 + \Delta x)-f(x_0)}{\Delta x}} limΔ0ΔxΔy=limΔ0Δxf(x0+Δx)f(x0)存在,则称函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导,并称次极限为 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0处的导数。记作 y ′ ∣ x = x 0 ; f ′ ( x 0 ) y^{'}\vert_{x =x_0};f^{'}(x_0) yx=x0f(x0) d y d x ∣ x = x 0 \frac{dy}{dx}\vert_{x=x_0} dxdyx=x0 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}\vert_{x=x_0} dxdf(x)x=x0即: y ′ ∣ x = x 0 = f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h y^{'}\vert_{x=x_0}= f^{'}(x) = \lim_{\Delta x \to 0}{\frac{\Delta y}{\Delta x}}= \lim_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} = \lim_{h \to 0}{\frac{f(x_0+h)-f(x_0)}{h}} yx=x0=f(x)=limΔx0ΔxΔy=limΔx0Δxf(x0+Δx)f(x0)=limh0hf(x0+h)f(x0)

  2. f ( x ) f(x) f(x) x 0 x_0 x0处可导的定义中, Δ \Delta Δ可以为 2 Δ 2\Delta n Δ n\Delta nΔ,但不能为 Δ 2 \Delta^2 Δ2,因为 Δ 2 \Delta^2 Δ2只能取到 0 + 0^+ 0+,但是取不到 0 − 0^- 0,而 Δ \Delta Δ必须包括 0 − 0^- 0 0 + 0^+ 0+

  3. 单侧导数定义:设函数 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0处存在如下单侧极限 lim ⁡ x → 0 − Δ y Δ x = lim ⁡ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim_{x \to 0^-}{\frac{\Delta y}{\Delta x}} = \lim_{x \to 0^-}{\frac{f(x_0 + \Delta x)-f(x_0)}{\Delta x}} limx0ΔxΔy=limx0Δxf(x0+Δx)f(x0) lim ⁡ Δ x → 0 + Δ y Δ x = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim_{\Delta x \to 0^+}{\frac{\Delta y}{\Delta x}} = \lim_{\Delta x \to 0^+}{\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}} limΔx0+ΔxΔy=limΔx0+Δxf(x0+Δx)f(x0)则分别称 f ( x ) f(x) f(x) x = x 0 x = x_0 x=x0处左,右可导,上述极限值分别称为 f ( x ) f(x) f(x) x = x 0 x= x_0 x=x0处的左,右导数,记为 f − ′ ( x 0 ) , f + ′ ( x 0 ) 或 y − ′ ( x 0 ) , y + ′ ( x 0 ) f^{'}_{-}(x_0),f_{+}^{'}(x_0)或y_{-}^{'}(x_0),y_{+}^{'}(x_0) f(x0),f+(x0)y(x0)y+(x0)

  4. 导数的等价意义: 令 x = x 0 + Δ x 令x = x_0 +\Delta x x=x0+Δx,导数可以改写成 f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f^{'}(x_0)= \lim\limits_{x \to x_0}{\frac{f(x)-f(x_0)}{x-x_0}} f(x0)=xx0limxx0f(x)f(x0)

    1. 注意:导数定义中, Δ x → 0 \Delta x \to 0 Δx0一定包含 Δ x → 0 − \Delta x \to 0^- Δx0以及 Δ x → 0 + \Delta x \to 0^+ Δx0+(或 x → x 0 − , x → x 0 + x \to x_0^-,x \to x_0^+ xx0,xx0+)
  5. f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内可导的定义:若 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内逐点可导,则称 f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)内可导

  6. f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]内可导的定义:若 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内逐点可导,则称 f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)内可导,若 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内可导,且 f ( x ) f(x) f(x) x = a x = a x=a处右可导,在 x = b x =b x=b处左可导,则称 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上可导。记为 f ( x ) ∈ D [ a , b ] f(x)\in D[a,b] f(x)D[a,b] f ( x ) ∈ C 2 [ a , b ] f(x)\in C_2[a,b] f(x)C2[a,b]

重要公式
  1. 椭圆方程的切线公式
    1. 椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1 a2x2+b2y2=1,在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的切线方程: x ⋅ x 0 a 2 + y ⋅ y 0 b 2 = 1 \frac{x\cdot x_0}{a^2}+\frac{y\cdot y_0}{b^2} = 1 a2xx0+b2yy0=1
    2. 椭球面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}= 1 a2x2+b2y2+c2z2=1 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)处的切平面: x x 0 a 2 + y y 0 b 2 + z z 0 c 2 = 1 \frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}= 1 a2xx0+b2yy0+c2zz0=1
    3. 例题:
      1. x 2 + y 2 4 = 1 在 ( 3 2 , 1 ) x^2+\frac{y^2}{4} = 1在(\frac{\sqrt{3}}{2},1) x2+4y2=1(23 ,1)处切线方程
  2. 函数 y y y在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的切线方程和法线方程
    1. 切线方程: y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0 = f^{'}(x_0)(x-x_0) yy0=f(x0)(xx0)

    2. 法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , ( f ′ ( x 0 ) ≠ 0 ) y - y_0 = -\frac{1}{f^{'}{(x_0)}}(x-x_0) ,(f^{'}(x_0)\neq 0) yy0=f(x0)1(xx0)(f(x0)=0)

重要性质
  1. 函数 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0处可导的充要条件: f − ′ ( x 0 ) f_-^{'}(x_0) f(x0) f + ′ ( x 0 ) f_+^{'}(x_0) f+(x0)都存在且相等

  2. 可导与连续关系: f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导,则 f ( x ) f(x) f(x)在点 x 0 x_0 x0处连续,反之函数在点 x 0 x_0 x0处连续则未必可导。

  3. 导数的几何意义:

    1. 曲线 y = f ( x ) y = f(x) y=f(x)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的切线的斜率为 t a n α = f ′ ( x 0 ) , 若 f ′ ( x 0 ) = 0 tan\alpha = f^{'}(x_0),若f^{'}(x_0) = 0 tanα=f(x0),f(x0)=0,则切线与 x x x轴平行, x 0 x_0 x0称为驻点

    2. f ′ ( x 0 ) ≠ ∞ f^{'}(x_0) \neq \infty f(x0)=时,曲线在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)

      1. 切线方程: y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0 = f^{'}(x_0)(x-x_0) yy0=f(x0)(xx0)

      2. 法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , ( f ′ ( x 0 ) ≠ 0 ) y - y_0 = -\frac{1}{f^{'}{(x_0)}}(x-x_0) ,(f^{'}(x_0)\neq 0) yy0=f(x0)1(xx0)(f(x0)=0)

    3. 例题:

      1. 求 y = s i n 2 x 求y = sin^2x y=sin2x x = π 4 x = \frac{\pi}{4} x=4π 处的切线方程
      2. 设曲线 y = l n x y = lnx y=lnx y = a x y = a\sqrt{x} y=ax 相切,求公切线。
  4. 导数的物理意义:一阶导表示速度,二阶导表示加速度。

  5. 求两曲线相切的切点的公切线:切点满足两个特点,切点处函数值相等和切点处切线斜率(导数)相等

解题思路
  1. 导数可导的等价关系(函数 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0处可导的充要条件: f − ′ ( x 0 ) f_-^{'}(x_0) f(x0) f + ′ ( x 0 ) f_+^{'}(x_0) f+(x0)都存在且相等)的应用:

    1. 方法:
      1. 证明一个函数是否可导,就一个方法,就是判断 f − ′ ( x 0 ) 与 f + ′ ( x 0 ) 是否都存在且相等 f_-^{'}(x_0)与f_+^{'}(x_0)是否都存在且相等 f(x0)f+(x0)是否都存在且相等
      2. 如果说一个函数在一点 x 0 x_0 x0可导,也可以知道 f − ′ ( x 0 ) = f + ′ ( x 0 ) f_-^{'}(x_0)=f_+^{'}(x_0) f(x0)=f+(x0)
    2. 例题:
      1. 证明函数 f ( x ) = ∣ x ∣ f(x) = |x| f(x)=x x = 0 x = 0 x=0不可导
  2. 导数定义的应用:凑定义式,分子,一动一定,分母,上下一致。

    1. 导数定义所能解决的问题:

      1. 利用导数定义求极限:抽象函数,隐函数
      2. 利用导数定义求导数:抽象函数,分段函数,复杂函数
      3. 利用导数定义求是否可导: f − ′ ( x 0 ) f_-^{'}(x_0) f(x0) f + ′ ( x 0 ) f_+^{'}(x_0) f+(x0)都存在且相等和函数可导是互为充要条件​
    2. 例题:

      1. f ( x ) f(x) f(x)可导且为奇函数, f ′ ( − 1 ) = 2 f^{'}(-1) = 2 f(1)=2,求 lim ⁡ x → 0 f ( 1 + 3 x ) + f ( − 1 + x ) x \lim\limits_{x\to 0}\frac{f(1+3x)+f(-1+x)}{x} x0limxf(1+3x)+f(1+x)

      2. f ′ ( 0 ) = 2 f^{'}(0) = 2 f(0)=2存在,求极限 lim ⁡ x → 0 f ( 2 x ) − f ( x ) x \lim\limits_{x\to 0}\frac{f(2x)-f(x)}{x} x0limxf(2x)f(x)

      3. f ( x ) f(x) f(x) x = 2 x = 2 x=2处可导,且 lim ⁡ x → 2 f ( x ) − 2 x 2 − 4 = 2 \lim\limits_{x\to 2}\frac{f(x)-2}{x^2-4} = 2 x2limx24f(x)2=2,求 f ( 2 ) f(2) f(2) f ′ ( 2 ) f^{'}(2) f(2)(提示: f ( x ) f(x) f(x)可导,说明 f ( x ) f(x) f(x)连续, lim ⁡ x → 2 x 2 − 4 = 0 \lim_{x \to 2}x^2-4 = 0 limx2x24=0,则一个极限除一个极限等于 0 0 0的极限等于常数,则这个极限也等于 0 0 0)

      4. f ( 0 ) = 0 f(0) = 0 f(0)=0 lim ⁡ x → 0 1 x 2 f ( 1 − e x ) \lim\limits_{x\to 0}\frac{1}{x^2}f(1-e^x) x0limx21f(1ex)存在,求 f ′ ( 0 ) f^{'}(0) f(0)

      5. 已知 f ( x ) = x ( x − 1 ) ( x − 2 ) … … ( x − 99 ) , f ′ ( 0 ) f(x) = x(x-1)(x-2)……(x-99),f^{'}(0) f(x)=x(x1)(x2)……(x99),f(0)

      6. 证明函数 f ( x ) = ∣ x ∣ f(x) = |x| f(x)=x x = 0 x = 0 x=0不可导​

      7. f ( 0 ) = 0 f(0) = 0 f(0)=0,则 f ( x ) f(x) f(x) x = 0 x = 0 x=0处可导的充要条件是()

        A. lim ⁡ h → 0 1 h 2 f ( 1 − c o s h ) \lim\limits_{h \to 0}\frac{1}{h^2}f(1-cosh) h0limh21f(1cosh)存在,B. lim ⁡ h → 0 1 h f ( 1 − e h ) \lim\limits_{h \to 0}\frac{1}{h}f(1-e^h) h0limh1f(1eh)存在

        C. lim ⁡ h → 0 1 h 2 f ( h − s i n h ) \lim\limits_{h \to 0}\frac{1}{h^2}f(h-sinh) h0limh21f(hsinh)存在​,C. lim ⁡ h → 0 f ( 2 h ) − f ( h ) h \lim\limits_{h\to 0}\frac{f(2h)-f(h)}{h} h0limhf(2h)f(h)存在

第二节:函数的求导法则

基本概念
  1. 函数的类型:复合函数,反函数,隐函数,幂指函数,分段函数,参数方程确定的函数,变限积分函数。
重要公式
  1. 基本求导公式(正着逆着都要熟练掌握,考试的时候这个会变着样子考,很重要)
    ( x a ) ′ = a x a − 1 ( a x ) ′ = a x l n x , ( e x ) ′ = e x ( l o g a x ) ′ = 1 x l n a , ( l n x ) ′ = 1 x , ( l n ∣ x ∣ ) ′ = 1 x ( s i n x ) ′ = c o s x , ( c o s x ) ′ = − s i n x ( t a n x ) ′ = s e c 2 x , ( c o t x ) ′ = − c s c 2 x ( s e c x ) ′ = s e c x t a n x , ( c s c x ) ′ = − c s c x c o t x ( a r c s i n x ) ′ = 1 1 − x 2 , ( a r c c o s x ) ′ = − 1 1 − x 2 ( a r c t a n x ) ′ = 1 1 + x 2 , ( a r c c o t x ) ′ = − 1 1 + x 2 (x^a)^{'} = ax^{a-1}\\ (a^x)^{'} = a^xlnx , (e^x)^{'} = e^x\\ (log_ax)^{'} = \frac{1}{xlna}, (lnx)^{'} = \frac{1}{x} ,(ln|x|)^{'} = \frac{1}{x}\\ (sinx)^{'} = cosx , (cosx)^{'} = -sinx\\ (tanx)^{'} = sec^2x , (cotx)^{'} = -csc^2x\\ (secx)^{'} = secxtanx , (cscx)^{'} = -cscxcotx\\ (arcsinx)^{'} = \frac{1}{\sqrt {1-x^2}} , (arccosx)^{'} = -\frac{1}{\sqrt {1-x^2}}\\ (arctanx)^{'} = \frac{1}{1+x^2} ,(arccotx)^{'} = -\frac{1}{1+x^2}\\ (xa)=axa1(ax)=axlnx(ex)=ex(logax)=xlna1(lnx)=x1(lnx)=x1(sinx)=cosx(cosx)=sinx(tanx)=sec2x(cotx)=csc2x(secx)=secxtanx(cscx)=cscxcotx(arcsinx)=1x2 1(arccosx)=1x2 1(arctanx)=1+x21(arccotx)=1+x21

  2. 导数四则运算

    1. ( u ± v ) ′ = u ′ + v ′ (u \pm v)^{'} = u^{'}+v{'} (u±v)=u+v

    2. ( k u ) ′ = k u ′ (ku)^{'} = ku^{'} (ku)=ku

    3. ( u v ) ′ = u ′ v + u v ′ , ( u v w ) ′ = u ′ v w + u v ′ w + u v w ′ (uv)^{'} = u^{'}v+uv^{'},(uvw)^{'}= u^{'}vw+uv^{'}w+uvw^{'} (uv)=uv+uv(uvw)=uvw+uvw+uvw

    4. ( u v ) ′ = u ′ v − u v ′ v 2 , ( v ≠ 0 ) (\frac{u}{v})^{'}= \frac{u^{'}v-uv^{'}}{v^2},(v\neq 0) (vu)=v2uvuv,(v=0)

  3. 极坐标化直角坐标公式:

    1. x = r c o s θ = r ( θ ) c o s θ x = rcos\theta = r(\theta)cos\theta x=rcosθ=r(θ)cosθ
    2. y = r s i n θ = r ( θ ) s i n θ y = rsin\theta = r(\theta)sin\theta y=rsinθ=r(θ)sinθ
  4. C m n C^n_m Cmn求解公式: n ( n − 1 ) . . . ( n − m + 1 ) m ! \frac{n(n-1)...(n-m+1)}{m!} m!n(n1)...(nm+1)

  5. 反函数的求导公式:

    1. f ( x ) f(x) f(x)可导,且 f ′ ( x ) ≠ 0 f^{'}(x)\neq 0 f(x)=0,又设 x = φ ( y ) x = \varphi(y) x=φ(y) y = f ( x ) y = f(x) y=f(x)的反函数,则 φ ′ ( y ) = d x d y = 1 d y d x = 1 f ′ ( x ) \varphi^{'}(y) = \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{f^{'}(x)} φ(y)=dydx=dxdy1=f(x)1

    2. f ( x ) f(x) f(x)二阶可导,且 f ′ ( x ) ≠ 0 f^{'}(x) \neq 0 f(x)=0,又设 x = φ ( y ) x = \varphi(y) x=φ(y) y = f ( x ) y = f(x) y=f(x)反函数,则 φ ′ ′ ( y ) = − f ′ ′ ( x ) f ′ 3 ( x ) \varphi^{''}(y) = -\frac{f^{''}(x)}{f^{'3}(x)} φ′′(y)=f3(x)f′′(x)

重要性质
  1. 复合函数的求导法则: y = f ( u ) y = f(u) y=f(u)可导, u = φ ( x ) u= \varphi(x) u=φ(x)可导,则 f [ φ ( x ) ] f[\varphi(x)] f[φ(x)]也可导,且 d y d x = f [ φ ( x ) ] φ ′ ( x ) \frac{dy}{dx} = f[\varphi(x)]\varphi^{'}(x) dxdy=f[φ(x)]φ(x)

  2. 反函数的求导法则:

    1. 定理一: 设 f ( x ) 可导,且 f ′ ( x ) ≠ 0 , 又设 x = φ ( y ) 为 y = f ( x ) 的反函数,则 φ ′ ( y ) = d x d y = 1 d y d x = 1 f ′ ( x ) 。 设f(x)可导,且f^{'}(x)\neq 0,又设x = \varphi(y)为y = f(x)的反函数,则\varphi^{'}(y) = \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{f^{'}(x)}。 f(x)可导,且f(x)=0,又设x=φ(y)y=f(x)的反函数,则φ(y)=dydx=dxdy1=f(x)1
    2. 定理二:设 f ( x ) f(x) f(x)二阶可导,且 f ′ ( x ) ≠ 0 f^{'}(x) \neq 0 f(x)=0,又设 x = φ ( y ) x = \varphi(y) x=φ(y) y = f ( x ) y = f(x) y=f(x)反函数,则 φ ′ ′ ( y ) = − f ′ ′ ( x ) f ′ 3 ( x ) \varphi^{''}(y) = -\frac{f^{''}(x)}{f^{'3}(x)} φ′′(y)=f3(x)f′′(x)
  3. 隐函数的导数:两边对 x x x求导,碰到 y y y,先对 y y y求导,再乘 y ′ y^{'} y。碰到 y ′ y^{'} y,先对 y ′ y^{'} y求导,再乘 y ′ ′ y{''} y′′

  4. 由参数方程确定的函数的导数:设 y = f ( x ) 由 { x = φ ( x ) y = ψ ( x ) y = f(x)由\begin{cases}x = \varphi(x) \\ y = \psi(x)\end{cases} y=f(x){x=φ(x)y=ψ(x)确定, ψ ( t ) 二阶可导且 φ ′ ( x ) ≠ 0 , 则 \psi(t)二阶可导且\varphi^{'}(x) \neq 0,则 ψ(t)二阶可导且φ(x)=0,

    1. y ′ = d y d x = d y / d t d x / d t = ψ ′ ( t ) φ ′ ( t ) 。 y^{'} = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\psi^{'}(t)}{\varphi^{'}(t)}。 y=dxdy=dx/dtdy/dt=φ(t)ψ(t)
    2. y ′ ′ = d y ′ / d t d x / d t y^{''} = \frac{dy^{'}/dt}{dx/dt} y′′=dx/dtdy/dt
    3. 注意:参数方程中的单调区间指的是 x x x​的范围。
  5. 幂指函数求导

    1. 法一: y = u ( x ) v ( x ) = e v ( x ) ln ⁡ u ( x ) y = u(x)^{v(x)} = e^{v(x)\ln u(x)} y=u(x)v(x)=ev(x)lnu(x)
    2. 法二: ln ⁡ y = v ( x ) ln ⁡ u ( x ) \ln y = v(x) \ln u(x) lny=v(x)lnu(x),其他使用场景:
      1. 用于连乘或连除形式的函数求导(把乘除换成加减的形式)
      2. 用于幂函数或指数函数的求导(把幂函数或指数函数换成乘法的形式)。
  6. 分段函数求导方法:

    1. 分段点用导数定义来求
    2. 其他部分用求导法则
    3. 注意绝对值也是一种分段函数。
  7. 极坐标求导:

    1. step1:先化为直角坐标: x = r c o s θ = r ( θ ) c o s θ , y = r s i n θ = r ( θ ) s i n θ x = rcos\theta = r(\theta)cos\theta,y = rsin\theta = r(\theta)sin\theta x=rcosθ=r(θ)cosθ,y=rsinθ=r(θ)sinθ
    2. step2:得到一个参数方程,再使用参数方程的求导方法求导。
  8. 变限积分函数的求导法则

    1. [ ∫ a φ ( x ) f ( t ) d t ] ′ = f [ φ ( x ) ] φ ′ ( x ) [\int_a^{\varphi(x)} f(t)dt]^{'} = f[\varphi(x)]\varphi^{'}(x) [aφ(x)f(t)dt]=f[φ(x)]φ(x)
    2. [ ∫ ψ ( x ) φ ( x ) f ( t ) d t ] ′ = f [ φ ( x ) ] φ ′ ( x ) − f [ ψ ( x ) ] ψ ′ ( x ) [\int_{\psi(x)}^{\varphi(x)}f(t)dt]^{'} = f[\varphi(x)]\varphi^{'}(x)-f[\psi(x)]\psi^{'}(x) [ψ(x)φ(x)f(t)dt]=f[φ(x)]φ(x)f[ψ(x)]ψ(x)
    3. [ ∫ ψ ( x ) φ ( x ) g ( x ) f ( t ) d t ] ′ = [ g ( x ) ∫ ψ ( x ) φ ( x ) f ( t ) d t ] ′ = g ′ ( x ) ∫ ψ ( x ) φ ( x ) f ( t ) d t + g ( x ) { f [ φ ( x ) ] φ ′ ( x ) − f [ ψ ( x ) ] ψ ′ ( x ) } [\int_{\psi(x)}^{\varphi(x)}g(x)f(t)dt]^{'} = [g(x)\int_{\psi(x)}^{\varphi(x)}f(t)dt]^{'} = g^{'}(x)\int^{\varphi(x)}_{\psi(x)} f(t)dt+g(x)\{f[\varphi(x)]\varphi^{'}(x)-f[\psi(x)]\psi^{'}(x)\} [ψ(x)φ(x)g(x)f(t)dt]=[g(x)ψ(x)φ(x)f(t)dt]=g(x)ψ(x)φ(x)f(t)dt+g(x){f[φ(x)]φ(x)f[ψ(x)]ψ(x)}
    4. 使用上面三个法则求导前 f ( t ) f(t) f(t)中不能含有变量 x x x
解题思路
  1. 求不可导点步骤

    1. 步骤:
      1. 第一步:找可疑点:分段点,绝对值等于零的点。
      2. 第二步:用导数定义判断点是否可导
      3. 做小题时,如果函数图像可以画出来,可以看函数图像的点是否光滑,不光滑的点就是不可导点。
    2. 例题:
      1. 设函数 f ( x ) = lim ⁡ x → ∞ 1 + ∣ x ∣ 3 n n , 求 f ( x ) 在 ( − ∞ , + ∞ ) 内不可导的点 设函数f(x) = \lim\limits_{x\to \infty}\sqrt[n]{1+|x|^{3n}},求f(x)在(-\infty,+\infty)内不可导的点 设函数f(x)=xlimn1+x3n ,f(x)(,+)内不可导的点
  2. 七大函数的求导

    1. 步骤:

      1. step1:确定函数类型和函数定义域。
      2. step2:分类求导
    2. 例题:

      1. y = e s i n 1 x y = e^{sin\frac{1}{x}} y=esinx1,求 d y d x \frac{dy}{dx} dxdy
      2. y = x a a + a x a + a a x y = x^{a^a}+a^{x^a}+a^{a^x} y=xaa+axa+aax,求 y ′ y^{'} y
      3. y = f ( x ) y = f(x) y=f(x)的反函数 x = g ( y ) x = g(y) x=g(y) f ( 2 ) = 1 f(2) = 1 f(2)=1 f ′ ( 2 ) = 3 f^{'}(2) = 3 f(2)=3,求 g ′ ( 1 ) g^{'}(1) g(1)
      4. f ( x ) f(x) f(x)可导, φ ( x ) \varphi(x) φ(x) f ( x ) f(x) f(x)的反函数,且 f ( 2 ) = 4 , f ′ ( 2 ) = 5 f(2) = 4,f^{'}(2) = \sqrt{5} f(2)=4,f(2)=5 f ′ ( 4 ) = 6 f^{'}(4) = \sqrt{6} f(4)=6 ,求 φ ′ ( 4 ) \varphi^{'}(4) φ(4)
      5. f ( x ) f(x) f(x)可导, x = φ ( y ) x = \varphi(y) x=φ(y) y = f ( x ) y = f(x) y=f(x)的反函数, f ′ ( x ) = e x 2 + x + 1 f^{'}(x) = e^{x^2+x+1} f(x)=ex2+x+1 f ( 0 ) = 3 f(0) = 3 f(0)=3,求 φ ′ ( 3 ) \varphi^{'}(3) φ(3)
      6. y 5 + 2 y − x − 3 x 7 = 0 y^5+2y-x-3x^7 = 0 y5+2yx3x7=0,求 y ′ ( 0 ) , y ′ ′ ( 0 ) y^{'}(0),y^{''}(0) y(0)y′′(0)
      7. { x = f ′ ( t ) y = t f ′ ( t ) − f ( t ) \begin{cases}x = f^{'}(t)\\y = tf^{'}(t)-f(t)\end{cases} {x=f(t)y=tf(t)f(t),求 d x d y \frac{dx}{dy} dydx
      8. { x = 3 t 2 + 2 t e y s i n t − y + 1 = 0 \begin{cases}x = 3t^2+2t\\e^ysint-y+1 = 0\end{cases} {x=3t2+2teysinty+1=0确定 y = y ( x ) y = y(x) y=y(x)函数,求 d y d x ∣ t = 0 \frac{dy}{dx}|_{t = 0} dxdyt=0
      9. F ( x ) = ∫ c o s x 1 e − t 2 d t F(x) = \int^{1}_{cosx}e^{-t^2}dt F(x)=cosx1et2dt,求 F ′ ( x ) F^{'}(x) F(x)
      10. f ( x ) = ∫ 0 x s i n ( x − t ) 2 d t f(x) = \int^x_0sin(x-t)^2dt f(x)=0xsin(xt)2dt,求 f ′ ( x ) f^{'}(x) f(x)(第六章会讲)
      11. lim ⁡ x → 0 ∫ 0 x s i n ( x − t ) 2 d t x − s i n x \lim\limits_{x\to 0}\frac{\int^x_0sin(x-t)^2dt}{x-sinx} x0limxsinx0xsin(xt)2dt
      12. f ( x ) = { l n ( 1 + 2 x ) x > 0 2 x = 0 2 c o s x x < 0 f(x) = \begin{cases}ln(1+2x)&x>0\\ 2&x = 0\\2cosx &x<0\end{cases} f(x)= ln(1+2x)22cosxx>0x=0x<0,求 f ′ ( x ) f^{'}(x) f(x)
      13. y = ( x − 1 ) ( x + 1 ) 3 e x − 2 ⋅ ( x − 3 ) 4 , ( x > 3 ) y = \sqrt{\frac{(x-1)(x+1)^3}{e^{x-2}\cdot(x-3)^4}},(x>3) y=ex2(x3)4(x1)(x+1)3 ,(x>3),求 y ′ y^{'} y
      14. x y = y x x^y = y^x xy=yx,求 d y d x \frac{dy}{dx} dxdy
      15. y = x x y = x^x y=xx,求 y ′ y^{'} y
      16. 求曲线 r = θ r = \theta r=θ,在点 ( r , θ ) = ( π 2 , π 2 ) (r,\theta) = (\frac{\pi}{2},\frac{\pi}{2}) (r,θ)=(2π,2π)处切线的直角方程

第三节:高阶导数

基本概念
  1. 高阶导定义:若函数 y = f ( x ) y = f(x) y=f(x)的导数 y ′ = f ′ ( x ) y^{'} = f^{'}(x) y=f(x)可导,则称 f ′ ( x ) f^{'}(x) f(x)的导数为 f ( x ) f(x) f(x)的二阶导数,记作: y ′ ′ 或 d 2 y d x 2 y^{''}或\frac{d^2y}{dx^2} y′′dx2d2y,即 y ′ ′ = ( y ′ ) ′ y^{''} = (y^{'})^{'} y′′=(y) d 2 y d x 2 = d d x ( d y d x ) \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) dx2d2y=dxd(dxdy),类似地,二阶导数的导数称为三阶导数,以此类推,分别记作: y ′ ′ , y ( 4 ) , . . . , y ( n ) y^{''},y^{(4)},...,y^{(n)} y′′,y(4),...,y(n),或, d 3 y d x 3 , d 4 y d x 4 , . . . , d n y d x n \frac{d^3y}{dx^3},\frac{d^4y}{dx^4},...,\frac{d^ny}{dx^n} dx3d3y,dx4d4y,...,dxndny
重要公式
  1. 常用的高阶导数
    1. { ( e k x ) ( n ) = k n e k x ( a k x ) ( n ) = ( k l n a ) n a k x \begin{cases}(e^{kx})^{(n)} = k^ne^{kx}\\(a^{kx})^{(n)} = (klna)^na^{kx}\end{cases} {(ekx)(n)=knekx(akx)(n)=(klna)nakx
    2. { [ s i n ( a x + b ) ] ( n ) = a n s i n ( a x + b + n π 2 ) [ c o s ( a x + b ) ] ( n ) = a n c o s ( a x + b + n π 2 ) \begin{cases}[sin(ax+b)]^{(n)} = a^n sin(ax+b+\frac{n\pi}{2})\\ [cos(ax+b)]^{(n)}=a^n cos(ax+b+\frac{n\pi}{2})\end{cases} {[sin(ax+b)](n)=ansin(ax+b+2)[cos(ax+b)](n)=ancos(ax+b+2)
    3. { ( 1 a x + b ) ( n ) = ( − 1 ) n n ! a n ( a x + b ) ( n + 1 ) [ l n ( a x + b ) ] ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! a n ( a x + b ) n \begin{cases}(\frac{1}{ax+b})^{(n)} = \frac{(-1)^n n! a^n}{(ax+b)^{(n+1)}}\\ [ln(ax+b)]^{(n)} = \frac{(-1)^{n-1}(n-1)!a^n}{(ax+b)^n}\end{cases} {(ax+b1)(n)=(ax+b)(n+1)(1)nn!an[ln(ax+b)](n)=(ax+b)n(1)n1(n1)!an
重要性质
  1. 高阶导的运算法则
    1. ( u ± v ) ( n ) = u ( n ) ± v ( n ) (u\pm v)^{(n)} = u^{(n)}\pm v^{(n)} (u±v)(n)=u(n)±v(n)

    2. ( k u ) ( n ) = k u ( n ) (ku)^{(n)} = ku^{(n)} (ku)(n)=ku(n)

    3. 莱布尼茨公式: ( u v ) ( n ) = C n 0 u ( n ) v + C n 1 u ( n − 1 ) v ′ + . . . + C n n u v ( n ) (uv)^{(n)} = C^0_n u^{(n)}v+C^1_nu^{(n-1)}v^{'}+...+C^n_nuv^{(n)} (uv)(n)=Cn0u(n)v+Cn1u(n1)v+...+Cnnuv(n)

解题思路
  1. 高阶导求解
    1. 例题:
      1. 利用归纳法:

        1. y ′ , y ′ ′ , y ′ ′ ′ y^{'},y^{''},y^{'''} y,y′′,y′′′,找规律。
        2. 遇到 s i n x + c o s x sinx+cosx sinx+cosx,要想到提取一个 2 \sqrt{2} 2 ,变成 2 s i n ( x + π 4 \sqrt{2}sin(x+\frac{\pi}{4} 2 sin(x+4π)。​
      2. 化为两个函数相加形式,使用 ( u ± v ) ( n ) = u ( n ) ± v ( n ) (u\pm v)^{(n)} = u^{(n)}\pm v^{(n)} (u±v)(n)=u(n)±v(n)

        1. 两种函数形式可以化为几个函数相加的形式
          1. f ( x ) = l n ( a x 2 + b x + c ) f(x) = ln(ax^2+bx+c) f(x)=ln(ax2+bx+c)

          2. f ( x ) = . . . a x 2 + b x + c f(x) = \frac{...}{ax^2+bx+c} f(x)=ax2+bx+c...,这种形式的函数当看不出如何转化为两式相加减的形式时,可以使用以下步骤:

            1. 第一步:化为,分母化为两式相乘的形式,例如 1 x 2 − 3 x + 2 化为 1 ( x − 2 ) ( x − 1 ) \frac{1}{x^2-3x+2}化为\frac{1}{(x-2)(x-1)} x23x+21化为(x2)(x1)1

            2. 第二步:设 1 ( x − 2 ) ( x − 1 ) = A x − 2 + B x − 1 \frac{1}{(x-2)(x-1)} = \frac{A}{x-2}+\frac{B}{x-1} (x2)(x1)1=x2A+x1B

            3. 第三步:通分 A x − 2 + B x − 1 = ( A + B ) x − A − 2 B ( x − 2 ) ( x − 1 ) \frac{A}{x-2}+\frac{B}{x-1} = \frac{(A+B)x-A-2B}{(x-2)(x-1)} x2A+x1B=(x2)(x1)(A+B)xA2B

            4. 第四步:解 { A + B = 0 − A − 2 B = 1 得, A = 1 , B = − 1 \begin{cases}A+B = 0\\-A-2B = 1\end{cases}得,A = 1,B = -1 {A+B=0A2B=1得,A=1,B=1

      3. 利用莱布尼茨公式

        1. 公式: ( u v ) ( n ) = C n 0 u ( n ) v + C n 1 u ( n − 1 ) v ′ + . . . + C n n u v ( n ) (uv)^{(n)} = C^0_n u^{(n)}v+C^1_nu^{(n-1)}v^{'}+...+C^n_nuv^{(n)} (uv)(n)=Cn0u(n)v+Cn1u(n1)v+...+Cnnuv(n)
        2. 使用场景:两个函数相乘,函数的其中一项为幂函数 x n x^n xn,作为 v v v,随着 v v v的导数的阶数提高,最终会变成0,另一项为可归纳高阶导的函数,作为 u u u
    2. 例题:
      1. y = x 2 e 2 x , 求 y ( 20 ) y = x^2e^{2x},求y^{(20)} y=x2e2x,y(20)
      2. 设函数 f ( x ) = x 2 s i n 3 x , 求 f ( 5 ) ( x ) 设函数f(x) = x^2sin3x,求f^{(5)}(x) 设函数f(x)=x2sin3x,f(5)(x)
      3. 设 y = 1 x 2 − 3 x + 2 , 求 y ( n ) 设y = \frac{1}{x^2-3x+2},求y^{(n)} y=x23x+21,y(n)
      4. y = 1 a x + b , 求 y ( n ) y = \frac{1}{ax+b},求y^{(n)} y=ax+b1,y(n)
      5. y = e x s i n x , 求 y ( n ) y = e^xsinx,求y^{(n)} y=exsinx,y(n)
      6. 设 f ( x ) 任意阶可导,且 f ′ ( x ) = [ f ( x ) ] 2 , 则当 n > = 2 时 , 求 f ( n ) ( x ) 设f(x)任意阶可导,且f^{'}(x) = [f(x)]^2,则当n>=2时,求f^{(n)}(x) f(x)任意阶可导,且f(x)=[f(x)]2,则当n>=2,f(n)(x)
      7. y = s i n x c o s 2 x − s i n 3 x , 求 y ( n ) y = sinxcos^2x-sin^3x,求y^{(n)} y=sinxcos2xsin3x,y(n)

第四节:函数的微分

微分表示的是变化量, d y dy dy(微分)可以近似表示 Δ y \Delta y Δy

基本概念
  1. 函数的微分定义:若函数 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0处的增量可表示为 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = A Δ x + o ( Δ x ) \Delta y = f(x_0+\Delta x)-f(x_0) = A\Delta x+o(\Delta x) Δy=f(x0+Δx)f(x0)=AΔx+o(Δx),其中A为不依赖于 Δ x \Delta x Δx的常数,则称函数 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0处可微,而 A Δ x A\Delta x AΔx称为 f ( x ) f(x) f(x)在点 x 0 x_0 x0处相应于自变量增量 Δ x \Delta x Δx的微分,记作 d y dy dy,即 d y = A d x . dy = Adx. dy=Adx.

  2. 这里需要注意,这里的 Δ x \Delta x Δx d x dx dx相等,但是 Δ y \Delta y Δy d y dy dy不一定相等​,就比如: y = f ( x 2 ) y = f(x^2) y=f(x2)可导,取 x = − 1 x = -1 x=1 Δ x = 0.01 \Delta x = 0.01 Δx=0.01 d y ∣ x = − 1 = − 0.5 dy|_{x = -1}=-0.5 dyx=1=0.5,求 f ′ ( 1 ) f^{'}(1) f(1)

  3. 微分的几何意义:

    1. d y dy dy:沿切线纵坐标的增量

    2. Δ y \Delta y Δy:沿曲线纵坐标的增量

    3. 微分几何意义图:

      在这里插入图片描述

重要公式
  1. d ( u ± v ) = d u ± d v d(u \pm v) = du \pm dv d(u±v)=du±dv
  2. d ( k u ) = k d u d(ku) = kdu d(ku)=kdu
  3. d ( u v ) = v d u + u d v d(uv) = vdu+udv d(uv)=vdu+udv
  4. d u v = v d u + u d v v 2 d\frac{u}{v} = \frac{vdu + udv}{v^2} dvu=v2vdu+udv
重要性质
  1. 微分的运算法则:

    1. d ( u ± v ) = d u ± d v d(u \pm v) = du \pm dv d(u±v)=du±dv
    2. d ( k u ) = k d u d(ku) = kdu d(ku)=kdu
    3. d ( u v ) = v d u + u d v d(uv) = vdu+udv d(uv)=vdu+udv
    4. d u v = v d u + u d v v 2 d\frac{u}{v} = \frac{vdu + udv}{v^2} dvu=v2vdu+udv
    5. 复合函数的微分(微分形式不变性):设 y = f ( u ) , u = φ ( x ) 都可导,则复合函数 y = f [ φ ( x ) ] y= f(u),u = \varphi(x)都可导,则复合函数y = f[\varphi(x)] y=f(u),u=φ(x)都可导,则复合函数y=f[φ(x)]的微分为 d y = y x ′ d x = f ′ ( u ) φ ′ ( x ) d x = f ′ ( u ) d u dy = y_x^{'}dx = f^{'}(u)\varphi^{'}(x)dx = f^{'}(u)du dy=yxdx=f(u)φ(x)dx=f(u)du
  2. 求微分等于求导: d f ( x ) = f ′ ( x ) d x df(x) = f^{'}(x)dx df(x)=f(x)dx

  3. 凑微分等于积分,例如: 2 x d x = d ( x 2 + C ) , e s i n x c o s x d x = e s i n x d s i n x = d ( e s i n x + C ) 2xdx = d(x^2+C),e^{sinx}cosxdx = e^{sinx}dsinx = d(e^{sinx}+C) 2xdx=d(x2+C),esinxcosxdx=esinxdsinx=d(esinx+C)

解题思路
  1. 求复合函数微分:
    1. 运算法则:
      1. y = f ( u ) , u = φ ( x ) y= f(u),u = \varphi(x) y=f(u),u=φ(x)都可导,则复合函数 y = f [ φ ( x ) ] y = f[\varphi(x)] y=f[φ(x)]的微分为 d y = y x ′ d x = f ′ ( u ) φ ′ ( x ) d x = f ′ ( u ) d u dy = y_x^{'}dx = f^{'}(u)\varphi^{'}(x)dx = f^{'}(u)du dy=yxdx=f(u)φ(x)dx=f(u)du
      2. d ( u ± v ) = d u ± d v d(u \pm v) = du \pm dv d(u±v)=du±dv
      3. d ( k u ) = k d u d(ku) = kdu d(ku)=kdu
      4. d ( u v ) = v d u + u d v d(uv) = vdu+udv d(uv)=vdu+udv
      5. d u v = v d u + u d v v 2 d\frac{u}{v} = \frac{vdu + udv}{v^2} dvu=v2vdu+udv
    2. 例题:
      1. d e x + 2 y + 3 z de^{x+2y+3z} dex+2y+3z

y = f ( u ) , u = φ ( x ) y= f(u),u = \varphi(x) y=f(u),u=φ(x)都可导,则复合函数 y = f [ φ ( x ) ] y = f[\varphi(x)] y=f[φ(x)]的微分为 d y = y x ′ d x = f ′ ( u ) φ ′ ( x ) d x = f ′ ( u ) d u dy = y_x^{'}dx = f^{'}(u)\varphi^{'}(x)dx = f^{'}(u)du dy=yxdx=f(u)φ(x)dx=f(u)du
2. d ( u ± v ) = d u ± d v d(u \pm v) = du \pm dv d(u±v)=du±dv
3. d ( k u ) = k d u d(ku) = kdu d(ku)=kdu
4. d ( u v ) = v d u + u d v d(uv) = vdu+udv d(uv)=vdu+udv
5. d u v = v d u + u d v v 2 d\frac{u}{v} = \frac{vdu + udv}{v^2} dvu=v2vdu+udv
2. 例题:
1. 求 d e x + 2 y + 3 z de^{x+2y+3z} dex+2y+3z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值