第六章:多元函数微分学(下)
第三节:多元复合函数的求导法则
基本概念
- 隐函数求导中的一些题意理解:如果题中说一个由另一个确定,则说明这两个是同一个函数,如果两个表达式没有特别说明,就不是同一个表达式,例如:
- 已知 F ( x , y , z ) = 0 , F(x,y,z) = 0, F(x,y,z)=0,一阶连续可偏导, z = f ( x 2 + y 2 ) z = f(x^2+y^2) z=f(x2+y2)连续可导,求 d z d x \frac{dz}{dx} dxdz(这道题,因为没有特殊说明,所以 F ( x , y , z ) = 0 和 z = f ( x 2 + y 2 ) F(x,y,z) = 0和z = f(x^2+y^2) F(x,y,z)=0和z=f(x2+y2)不是一个表达式,如果使用公式法,就要按照case3来处理)
- 设 f ( u , v ) f(u,v) f(u,v)可微, z = z ( x , y ) z = z(x,y) z=z(x,y)由 ( x + 1 ) z − y 2 = x 2 f ( x − z , y ) (x+1)z-y^2 = x^2f(x-z,y) (x+1)z−y2=x2f(x−z,y)确定,求 d z ∣ ( 0 , 1 ) dz|_{(0,1)} dz∣(0,1)(这道题,有说明一个是由另一个确定,所以 z = z ( x , y ) z = z(x,y) z=z(x,y)和 ( x + 1 ) z − y 2 = x 2 f ( x − z , y ) (x+1)z-y^2 = x^2f(x-z,y) (x+1)z−y2=x2f(x−z,y)是一个函数)
重要公式
- 二元函数的反问问题:
z
=
f
(
x
,
y
)
⇆
对
x
积分
对
x
求导
∂
z
∂
x
=
f
x
′
(
x
,
y
)
⇆
对
y
积分
对
y
求导
∂
2
z
∂
x
y
=
f
x
y
′
′
(
x
,
y
)
z = f(x,y) \mathop{\leftrightarrows}\limits_{对x积分}^{对x求导}\frac{\partial z}{\partial x} =f^{'}_x(x,y)\mathop{\leftrightarrows}\limits_{对y积分}^{对y求导} \frac{\partial^2z}{\partial xy} = f^{''}_{xy}(x,y)
z=f(x,y)对x积分⇆对x求导∂x∂z=fx′(x,y)对y积分⇆对y求导∂xy∂2z=fxy′′(x,y)
- ∂ z ∂ x = g ( x , y ) ⇒ z ( x , y ) = ∫ g ( x , y ) d x + φ ( y ) \frac{\partial z}{\partial x} = g(x,y)\Rightarrow z(x,y) = \int g(x,y)dx+\varphi(y) ∂x∂z=g(x,y)⇒z(x,y)=∫g(x,y)dx+φ(y)
- ∂ 2 z ∂ x y = g ( x , y ) ⇒ z ( x , y ) = ∫ ( ∫ g ( x , y ) d x + φ ( y ) ) d y \frac{\partial^2 z}{\partial xy} = g(x,y)\Rightarrow z(x,y) = \int(\int g(x,y)dx+\varphi(y))dy ∂xy∂2z=g(x,y)⇒z(x,y)=∫(∫g(x,y)dx+φ(y))dy
重要性质
-
多元复合函数求导的链式法则
-
一元复合函数: y = f ( u ) , u = φ ( x ) y =f(u),u = \varphi(x) y=f(u),u=φ(x)
-
求导法则: d y d x = d y d u ⋅ d u d x \frac{dy}{dx} = \frac{dy}{du}\cdot \frac{du}{dx} dxdy=dudy⋅dxdu
-
微分法则: d y = f ′ ( u ) d u = f ′ ( u ) φ ( x ) d x dy = f^{'}(u)du = f^{'}(u)\varphi(x)dx dy=f′(u)du=f′(u)φ(x)dx
-
定理一:若函数 { u = φ ( t ) v = ψ ( t ) \begin{cases}u = \varphi(t)\\v = \psi(t)\end{cases} {u=φ(t)v=ψ(t)在点 t t t可导, z = f ( u , v ) z = f(u,v) z=f(u,v)在点 ( u , v ) (u,v) (u,v)处偏导连续,则复合函数 z = f [ ϕ ( t ) , ψ ( t ) ] z = f[\phi(t),\psi(t)] z=f[ϕ(t),ψ(t)]在点 t t t可导,且 d z d t = ∂ z ∂ u ⋅ ∂ u ∂ t + ∂ z ∂ v ⋅ ∂ v ∂ t \frac{dz}{dt} = \frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial t}+\frac{\partial z}{\partial v}\cdot \frac{\partial v}{\partial t} dtdz=∂u∂z⋅∂t∂u+∂v∂z⋅∂t∂v,这里的 f f f是一个一元函数,只有导数,没有偏导。
-
定理二: z = f ( u , v ) z = f(u,v) z=f(u,v)可微 { u = φ ( x , y ) v = ψ ( x , y ) \begin{cases}u = \varphi(x,y)\\v = \psi(x,y)\end{cases} {u=φ(x,y)v=ψ(x,y)可偏导,则 { ∂ z ∂ x = ∂ f ∂ u ⋅ ∂ u ∂ x + ∂ f ∂ v ⋅ ∂ v ∂ x = f 1 ′ ⋅ φ 1 ′ + f 2 ′ ⋅ ψ 1 ′ ∂ z ∂ y = ∂ f ∂ u ⋅ ∂ u ∂ y + ∂ f ∂ v ⋅ ∂ v ∂ y = f 1 ′ ⋅ φ 2 ′ + f 2 ′ ⋅ ψ 2 ′ \begin{cases}\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\cdot \frac{\partial v}{\partial x} = f^{'}_1\cdot \varphi^{'}_1+f^{'}_2\cdot\psi^{'}_1\\\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u}\cdot \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\cdot \frac{\partial v}{\partial y}=f^{'}_1\cdot \varphi^{'}_2+f^{'}_2\cdot\psi^{'}_2\end{cases} {∂x∂z=∂u∂f⋅∂x∂u+∂v∂f⋅∂x∂v=f1′⋅φ1′+f2′⋅ψ1′∂y∂z=∂u∂f⋅∂y∂u+∂v∂f⋅∂y∂v=f1′⋅φ2′+f2′⋅ψ2′
-
定理三:设 z = f ( u , v , x ) z = f(u,v,x) z=f(u,v,x)可偏导, { u = φ ( x , y ) v = ψ ( x , y ) \begin{cases}u = \varphi(x,y)\\v = \psi(x,y)\end{cases} {u=φ(x,y)v=ψ(x,y)可偏导,则: { ∂ z ∂ x = ∂ f ∂ u ⋅ ∂ u ∂ x + ∂ f ∂ v ⋅ ∂ v ∂ x + ∂ f ∂ x ∂ z ∂ y = ∂ f ∂ u ⋅ ∂ u ∂ y + ∂ f ∂ v ⋅ ∂ v ∂ y \begin{cases}\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\cdot \frac{\partial v}{\partial x} +\frac{\partial f}{\partial x}\\\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u}\cdot \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\cdot \frac{\partial v}{\partial y}\end{cases} {∂x∂z=∂u∂f⋅∂x∂u+∂v∂f⋅∂x∂v+∂x∂f∂y∂z=∂u∂f⋅∂y∂u+∂v∂f⋅∂y∂v,这里的 f f f是一个二元函数,没有导数只有偏导
- 注意 ∂ z ∂ x 和 ∂ f ∂ x \frac{\partial z}{\partial x}和\frac{\partial f}{\partial x} ∂x∂z和∂x∂f不同 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z是复合函数对 x x x的偏导数, ∂ f ∂ x \frac{\partial f}{\partial x} ∂x∂f把 f ( u , v , x ) f(u,v,x) f(u,v,x)中 u , v u,v u,v看做常量,对 x x x求偏导。
-
定理四:设 z = f ( u ) , u = ρ ( x , y ) z = f(u),u = \rho(x,y) z=f(u),u=ρ(x,y)可偏导,则 { ∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x = f ′ ( u ) ρ 1 ′ ∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y = f ′ ( u ) ρ 2 ′ \begin{cases}\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial x}=f^{'}(u)\rho^{'}_1\\\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial y} =f^{'}(u)\rho^{'}_2\end{cases} {∂x∂z=∂u∂z⋅∂x∂u=f′(u)ρ1′∂y∂z=∂u∂z⋅∂y∂u=f′(u)ρ2′
-
-
隐函数或者隐函数组求偏导:变量个数 $- $方程个数 = = = 自变量个数
-
公式法:对于 F x ′ F^{'}_x Fx′,公式法把 F x ′ F^{'}_x Fx′中所有的变量都看成自变量
-
case1: F ( x , y ) = 0 , 求 d y d x F(x,y) = 0,求\frac{dy}{dx} F(x,y)=0,求dxdy: d y d x = − F x ′ F y ′ \frac{dy}{dx} = -\frac{F^{'}_x}{F^{'}_y} dxdy=−Fy′Fx′
-
使用条件
- 函数 F ( x , y ) F(x,y) F(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)的某一邻域内具有连续偏导
- 有定义: F ( x 0 , y 0 ) = 0 F(x_0,y_0) = 0 F(x0,y0)=0
- F y ′ ( x 0 , y 0 ) ≠ 0 F^{'}_y(x_0,y_0)\neq 0 Fy′(x0,y0)=0
-
公式证明: F ( x , f ( x ) ) = 0 → F 1 ′ + F 2 ′ d y d x = 0 → d y d x = − F 1 ′ F 2 ′ F(x,f(x)) = 0 \rightarrow F^{'}_1+F^{'}_2 \frac{dy}{dx} = 0 \rightarrow \frac{dy}{dx} = -\frac{F^{'}_1}{F^{'}_2} F(x,f(x))=0→F1′+F2′dxdy=0→dxdy=−F2′F1′
-
-
case2: F ( x , y , z ) = 0 , F ( x , y , z ) F(x,y,z) = 0,F(x,y,z) F(x,y,z)=0,F(x,y,z)一阶连续可偏导求 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} ∂x∂z,∂y∂z: ∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial x} = -\frac{F^{'}_x}{F^{'}_z},\frac{\partial z}{\partial y} = -\frac{F^{'}_y}{F^{'}_z} ∂x∂z=−Fz′Fx′,∂y∂z=−Fz′Fy′
-
使用条件:
- 在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)的某邻域内具有连续偏导数
- 有定义: F ( x 0 , y 0 , z 0 ) = 0 F(x_0,y_0,z_0) = 0 F(x0,y0,z0)=0
- F x ′ ( x 0 , y 0 , z 0 ) ≠ 0 F^{'}_x(x_0,y_0,z_0) \ne 0 Fx′(x0,y0,z0)=0
-
公式证明: F ( x , y , z ( x , y ) ) = 0 → { F x ′ + F z ′ ∂ z ∂ x = 0 , 两边对 x 求导 F y ′ + F y ′ ∂ z ∂ y = 0 , 两边对 y 求导 F(x,y,z(x,y)) = 0 \rightarrow \begin{cases}F^{'}_x+F^{'}_z\frac{\partial z}{\partial x} = 0,&两边对x求导\\F^{'}_y+F^{'}_y\frac{\partial z}{\partial y} = 0,&两边对y求导\end{cases} F(x,y,z(x,y))=0→{Fx′+Fz′∂x∂z=0,Fy′+Fy′∂y∂z=0,两边对x求导两边对y求导
-
-
case3: { F ( x , y , z ) = 0 G ( x , y , z ) = 0 , F , G \begin{cases}F(x,y,z) = 0\\G(x,y,z) = 0\end{cases},F,G {F(x,y,z)=0G(x,y,z)=0,F,G,一阶连续可偏导,求 d y d x , d z d x \frac{dy}{dx},\frac{dz}{dx} dxdy,dxdz: { F x ′ + F y ′ ⋅ d y d x + F z ′ ⋅ d z d x = 0 G x ′ + G y ′ ⋅ d y d x + G z ′ ⋅ d z d x = 0 \begin{cases}F^{'}_x+F^{'}_y\cdot\frac{dy}{dx}+F^{'}_z\cdot \frac{dz}{dx} = 0\\G^{'}_x+G^{'}_y\cdot\frac{dy}{dx}+G^{'}_z\cdot \frac{dz}{dx} = 0\end{cases} {Fx′+Fy′⋅dxdy+Fz′⋅dxdz=0Gx′+Gy′⋅dxdy+Gz′⋅dxdz=0
-
-
求导法:
-
求导法是公式法的起源,公式法就是使用求导法证明的。
-
求导法需要满足条件:在 F ( . . . ) = 0 F(...) = 0 F(...)=0中, F F F的因变量偏导在求导点 ( x 0 , y 0 , . . . ) (x_0,y_0,...) (x0,y0,...)处不等于 0 0 0
-
求导步骤:两边对 x x x求导,碰到 z z z对 z z z求导,再乘以 d z d x \frac{dz}{dx} dxdz或 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z
-
-
微分法:case4: { F ( x , y , u , v ) = 0 G ( x , y , u , v ) = 0 , F , G \begin{cases}F(x,y,u,v) = 0\\G(x,y,u,v) = 0\end{cases},F,G {F(x,y,u,v)=0G(x,y,u,v)=0,F,G一阶连续可偏导,求 d u d x , d v d x , d u d y , d v d y \frac{du}{dx},\frac{dv}{dx},\frac{du}{dy},\frac{dv}{dy} dxdu,dxdv,dydu,dydv
- 使用条件:
- 函数 F ( x , y , u , v ) , G ( x , y , u , v ) F(x,y,u,v),G(x,y,u,v) F(x,y,u,v),G(x,y,u,v)满足在点 P ( x 0 , y 0 , u 0 , v 0 ) P(x_0,y_0,u_0,v_0) P(x0,y0,u0,v0)的某邻域内具有连续偏导数
- 有定义: F ( x 0 , y 0 , u 0 , v 0 ) = 0 , G ( x 0 , y 0 , u 0 , v 0 ) = 0 F(x_0,y_0,u_0,v_0) = 0,G(x_0,y_0,u_0,v_0) = 0 F(x0,y0,u0,v0)=0,G(x0,y0,u0,v0)=0
- J ∣ P = ∂ ( F , G ) ∂ ( u , v ) ∣ P ≠ 0 J|_P = \frac{\partial (F,G)}{\partial (u,v)}|_P \neq 0 J∣P=∂(u,v)∂(F,G)∣P=0
- 方法:
- 两边求微分,把所有的变量都当成自变量,对于 F ( x + z y , y + z x ) = 0 F(x+\frac{z}{y},y+\frac{z}{x}) = 0 F(x+yz,y+xz)=0,两边微分得 F 1 ′ d ( x + z y ) + F 2 ′ d ( y + z x ) = 0 F^{'}_{1}d(x+\frac{z}{y})+F^{'}_{2}d(y+\frac{z}{x}) = 0 F1′d(x+yz)+F2′d(y+xz)=0
- 化简:例如: d ( x + z y ) = d x + y d z − z d y y 2 d(x+\frac{z}{y}) = dx+\frac{ydz-zdy}{y^2} d(x+yz)=dx+y2ydz−zdy
- 凑微分表达式,例如: d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz = \frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy dz=∂x∂zdx+∂y∂zdy
- 若 d z = φ ( x , y ) d x + ψ ( x , y ) d y 若dz = \varphi(x,y)dx+\psi(x,y)dy 若dz=φ(x,y)dx+ψ(x,y)dy,则 ∂ z ∂ x = φ ( x , y ) , ∂ z ∂ x = ψ ( x , y ) \frac{\partial z}{\partial x} = \varphi(x,y),\frac{\partial z}{\partial x} = \psi(x,y) ∂x∂z=φ(x,y),∂x∂z=ψ(x,y)
- 使用条件:
-
解题思路
-
多元符合函数求偏导:
- 方法:
- 显函数求偏导:对 x x x求偏导把 y y y当常数,对 y y y求偏导把 x x x当常数
- 隐函数求偏导:
- step1:根据方程个数和自变量个数,绘制自变量关系图,中间变量个数$ = $方程个数,关系图不止一种画法,一定要结合题干画图。
- step2:根据自变量关系图和链式法则求偏导,然后解方程组。
- 例题:
- 设 z = x y + y x 设z = x^y+y^x 设z=xy+yx,求 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} ∂x∂z,∂y∂z(只需要算一个 x x x,同理得就可以求出 y y y的了)
- 设 z = ( x 2 + y 2 ) x y , 求 ∂ z ∂ x , ∂ z ∂ y z = (x^2+y^2)^{xy},求\frac{\partial z}{\partial x},\frac{\partial z}{\partial y} z=(x2+y2)xy,求∂x∂z,∂y∂z(指对化)
- 设 z = e u + v 2 z = e^{u+v^2} z=eu+v2,其中 { u = l n t v = s i n t \begin{cases}u = lnt\\v = sint\end{cases} {u=lntv=sint,求 d z d t \frac{dz}{dt} dtdz
- 设 z = e u + v z = e^{u+v} z=eu+v,其中 { u = x y v = y x \begin{cases}u = xy\\v = \frac{y}{x}\end{cases} {u=xyv=xy,求 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} ∂x∂z,∂y∂z
- 设 z = f ( x + y , x y , x ) , z = f(x+y,xy,x), z=f(x+y,xy,x),其中 f f f二阶连续可偏导,求 ∂ 2 z ∂ x 2 \frac{\partial^2 z}{\partial x^2} ∂x2∂2z
- 设 f ( u ) f(u) f(u)具有二阶连续导数,且 g ( x , y ) = x f ( y x ) + y f ( x y ) , 证明 x 2 ∂ 2 g ∂ x 2 − y 2 ∂ 2 g ∂ y 2 = 0 g(x,y) = xf(\frac{y}{x})+yf(\frac{x}{y}),证明x^2\frac{\partial^2g}{\partial x^2}-y^2\frac{\partial^2 g}{\partial y^2} = 0 g(x,y)=xf(xy)+yf(yx),证明x2∂x2∂2g−y2∂y2∂2g=0(可以使用对称性)
- 已知 F ( x , y , z ) = 0 , F(x,y,z) = 0, F(x,y,z)=0,一阶连续可偏导, z = f ( x 2 + y 2 ) z = f(x^2+y^2) z=f(x2+y2)连续可导,求 d z d x \frac{dz}{dx} dxdz
- 设 x 2 + y 2 + z 2 − 4 z = 0 ,求 ∂ 2 z ∂ x 2 x^2+y^2+z^2-4z = 0,求\frac{\partial^2z}{\partial x^2} x2+y2+z2−4z=0,求∂x2∂2z
- 设 f ( u , v ) f(u,v) f(u,v)可微, z = z ( x , y ) z = z(x,y) z=z(x,y)由 ( x + 1 ) z − y 2 = x 2 f ( x − z , y ) (x+1)z-y^2 = x^2f(x-z,y) (x+1)z−y2=x2f(x−z,y)确定,求 d z ∣ ( 0 , 1 ) dz|_{(0,1)} dz∣(0,1)
- 设 y = y ( x ) y = y(x) y=y(x)由方程 s i n y + e x − x y − 1 = 0 siny+e^x-xy-1 = 0 siny+ex−xy−1=0确定,求 d y d x ∣ x = 0 \frac{dy}{dx}|_{x = 0} dxdy∣x=0
- 设 u = f ( x , y , z ) u = f(x,y,z) u=f(x,y,z)一阶连续可偏导,又 z = z ( x , y ) z =z(x,y) z=z(x,y)由 x e x + y e y = z e z xe^x+ye^y = ze^z xex+yey=zez确定,求 d u du du
- z = f ( x 2 + y 2 ) z = f(\sqrt{x^2+y^2}) z=f(x2+y2)二阶连续可导,且 ∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2} = 0 ∂x2∂2z+∂y2∂2z=0,令 u = x 2 + y 2 u = \sqrt{x^2+y^2} u=x2+y2,求 z = f ( u ) z = f(u) z=f(u)
- z = f ( x , y ) z = f(x,y) z=f(x,y)二阶连续可偏导,求 a a a使在 { u = x − 2 y v = x + a y \begin{cases}u = x-2y\\v = x+ay\end{cases} {u=x−2yv=x+ay下把 6 ∂ 2 z ∂ x 2 + ∂ 2 z ∂ x ∂ y − ∂ 2 z ∂ y 2 = 0 6\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial x\partial y}-\frac{\partial^2z}{\partial y^2} = 0 6∂x2∂2z+∂x∂y∂2z−∂y2∂2z=0,化为 ∂ 2 z ∂ u ∂ v = 0 \frac{\partial^2z}{\partial u\partial v} = 0 ∂u∂v∂2z=0
- z = z ( x , y ) z = z(x,y) z=z(x,y)满足 ∂ z ∂ x + ∂ z ∂ y = 0 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} = 0 ∂x∂z+∂y∂z=0在变换 w = x 2 + y 2 + z 2 w = x^2+y^2+z^2 w=x2+y2+z2及 { x = u + v y = u − v \begin{cases}x = u+v\\y = u-v\end{cases} {x=u+vy=u−v,把 ∂ z ∂ x + ∂ z ∂ y = 0 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} = 0 ∂x∂z+∂y∂z=0化为 w w w关于 u , v u,v u,v的方程。(tip:这道题的自变量关系图有很多种画法, z = z ( w , u , v , x , y ) z = z(w,u,v,x,y) z=z(w,u,v,x,y),题目中给出三个式子,去掉三个自变量,剩下的就是最终自变量,关键是去掉哪三个,题目中给条件 ∂ z ∂ x + ∂ z ∂ y = 0 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} = 0 ∂x∂z+∂y∂z=0,让求 w w w关于 u , v u,v u,v的关系,所以 x , y x,y x,y做自变量, w , u , v w,u,v w,u,v做中间变量。根据这三点绘制自变量关系图)
- z = f ( x , y ) z = f(x,y) z=f(x,y),满足 x 2 ∂ z ∂ x + y 2 ∂ z ∂ y = z 2 x^2\frac{\partial z}{\partial x}+y^2\frac{\partial z}{\partial y} = z^2 x2∂x∂z+y2∂y∂z=z2,在 { u = x v = 1 y − 1 x w = 1 z − 1 x \begin{cases}u = x\\v = \frac{1}{y}-\frac{1}{x}\\w = \frac{1}{z}-\frac{1}{x}\end{cases} ⎩ ⎨ ⎧u=xv=y1−x1w=z1−x1,确定新的函数 w = w ( u , v ) w = w(u,v) w=w(u,v),求变换后的形式。
- 方法:
-
求偏导的反问问题(多元函数不定积分)
-
问题描述:给偏导求原函数
-
求解模型:
- 积分法: z = f ( x , y ) ⇆ 对 x 积分 对 x 求导 ∂ z ∂ x = f x ′ ( x , y ) ⇆ 对 y 积分 对 y 求导 ∂ 2 z ∂ x y = f x y ′ ′ ( x , y ) z = f(x,y) \mathop{\leftrightarrows}\limits_{对x积分}^{对x求导}\frac{\partial z}{\partial x} =f^{'}_x(x,y)\mathop{\leftrightarrows}\limits_{对y积分}^{对y求导} \frac{\partial^2z}{\partial xy} = f^{''}_{xy}(x,y) z=f(x,y)对x积分⇆对x求导∂x∂z=fx′(x,y)对y积分⇆对y求导∂xy∂2z=fxy′′(x,y)
- 凑微分法: d f ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y = u ( x , y ) d v ( x , y ) + v ( x , y ) d u ( x , y ) = d u v df(x,y) = P(x,y)dx+Q(x,y)dy = u(x,y)dv(x,y)+v(x,y)du(x,y) = duv df(x,y)=P(x,y)dx+Q(x,y)dy=u(x,y)dv(x,y)+v(x,y)du(x,y)=duv
- 微分方程法: ∂ z ∂ x + P ( x ) z = 0 ⇒ z = C ( y ) e − ∫ P ( x ) d x \frac{\partial z}{\partial x}+P(x)z = 0\Rightarrow z = C(y)e^{-\int P(x)dx} ∂x∂z+P(x)z=0⇒z=C(y)e−∫P(x)dx
-
求解步骤:
- 积分法:
- 从高阶偏导入手,先导后积分,后导先积分
- 且对 x x x积分是要加上 φ ( y ) \varphi(y) φ(y),因为对 x x x求导时,把 y y y当成常数,所以积分时补的 C C C是一个关于 y y y的数,记为 φ ( y ) \varphi(y) φ(y),同理对 y y y积分补上 ψ ( x ) \psi(x) ψ(x)
- 凑微分法:
- 凑: d f ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y = u ( x , y ) d v ( x , y ) + v ( x , y ) d u ( x , y ) = d u v df(x,y) = P(x,y)dx+Q(x,y)dy = u(x,y)dv(x,y)+v(x,y)du(x,y) = duv df(x,y)=P(x,y)dx+Q(x,y)dy=u(x,y)dv(x,y)+v(x,y)du(x,y)=duv
- 得到 f ( x , y ) = u v + C f(x,y) = uv+C f(x,y)=uv+C
- 积分法:
-
例题:
- 设 z = f ( x , y ) z = f(x,y) z=f(x,y)满足 ∂ 2 z ∂ x ∂ y = x + y , f x ′ ( x , 0 ) = 2 x , f ( 0 , y ) = y 求 f ( x , y ) \frac{\partial^2z}{\partial x\partial y} = x+y,f^{'}_x(x,0) = 2x,f(0,y) = y求f(x,y) ∂x∂y∂2z=x+y,fx′(x,0)=2x,f(0,y)=y求f(x,y)
- 设 z = f ( x , y ) z = f(x,y) z=f(x,y)满足 f ( x , 1 ) = 0 f(x,1) = 0 f(x,1)=0, f y ′ ( x , 0 ) = s i n x f^{'}_y(x,0) = sinx fy′(x,0)=sinx, f y y ′ ′ = 2 x f^{''}_{yy} = 2x fyy′′=2x,求 f ( x , y ) f(x,y) f(x,y)
- 设 z = f ( x , y ) z = f(x,y) z=f(x,y)满足 f ( x , 1 ) = 0 f(x,1) = 0 f(x,1)=0, f ( 0 , y ) = y 2 f(0,y) = y^2 f(0,y)=y2, f y x ′ ′ = 2 x f^{''}_{yx} = 2x fyx′′=2x,求 f ( x , y ) f(x,y) f(x,y)。(tip:知道 f ( 0 , y ) = y 2 f(0,y) = y^2 f(0,y)=y2可知 f y ’ ( 0 , y ) = 2 y f^{’}_y(0,y) = 2y fy’(0,y)=2y)
- d f ( x , y ) = y e y d x + x ( 1 + y ) e y d y df(x,y) = ye^ydx+x(1+y)e^ydy df(x,y)=yeydx+x(1+y)eydy,且 f ( 0 , 0 ) = 0 f(0,0) = 0 f(0,0)=0,求 f ( x , y ) f(x,y) f(x,y)
- z = f ( x , y ) z = f(x,y) z=f(x,y), f ( 0 , π 2 ) = 1 f(0,\frac{\pi}{2}) = 1 f(0,2π)=1, f x ′ ( x , y ) = − f ( x , y ) f^{'}_{x}(x,y) = -f(x,y) fx′(x,y)=−f(x,y)且 lim h → 0 [ f ( 0 , y + h ) f ( 0 , y ) ] 1 h = e c o t y \lim\limits_{h\to 0}[\frac{f(0,y+h)}{f(0,y)}]^{\frac{1}{h}} = e^{coty} h→0lim[f(0,y)f(0,y+h)]h1=ecoty,求 f ( x , y ) f(x,y) f(x,y)。
-
第四节:多元函数极限及其求法
条件极限引例:已知地形图 z = f ( x , y ) z = f(x,y) z=f(x,y),求地形的峰顶
基本概念
-
多元函数极值:定义:若函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域内有 f ( x , y ) < f ( x 0 , y 0 ) ( 或 f ( x , y ) > f ( x 0 , y 0 ) ) f(x,y)<f(x_0,y_0)(或f(x,y)>f(x_0,y_0)) f(x,y)<f(x0,y0)(或f(x,y)>f(x0,y0))则称函数在该点取得极大值(极小值),极大值和极小值,统称为极值,使函数取得极值的点为极值点,例如: z = x 2 + y 2 z = x^2+y^2 z=x2+y2在点 ( 0 , 0 ) (0,0) (0,0)有极小值。
-
定义的表达式
- ( x 0 , y 0 ) (x_0,y_0) (x0,y0)取得极大值满足: lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) < f ( x 0 , y 0 ) \lim\limits_{(x,y)\to(x_0,y_0)} f(x,y) < f(x_0,y_0) (x,y)→(x0,y0)limf(x,y)<f(x0,y0)
- ( x 0 , y 0 ) (x_0,y_0) (x0,y0)取得极小值满足: lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) > f ( x 0 , y 0 ) \lim\limits_{(x,y)\to(x_0,y_0)} f(x,y) > f(x_0,y_0) (x,y)→(x0,y0)limf(x,y)>f(x0,y0)
-
定义的应用:给极限问极值,使用保号性
- z = f ( x , y ) z = f(x,y) z=f(x,y)在 ( 0 , 0 ) (0,0) (0,0)处连续,且 lim ( x , y ) → ( 0 , 0 ) f ( x , y ) − 1 1 − c o s x 2 + y 2 = 2 \lim\limits_{(x,y)\to(0,0)}\frac{f(x,y)-1}{1-cos\sqrt{x^2+y^2}} = 2 (x,y)→(0,0)lim1−cosx2+y2f(x,y)−1=2,问 f ( x , y ) f(x,y) f(x,y)在点 ( 0 , 0 ) (0,0) (0,0)处是否取得极值(使用保号性)
-
重要公式
-
常用不等式
- a 1 + a 2 + . . . + a n ≥ n a 1 a 2 . . . a n n a_1+a_2+...+a_n \geq n\sqrt[n]{a_1a_2...a_n} a1+a2+...+an≥nna1a2...an
- a 2 + b 2 ≥ 2 a b a^2+b^2\geq 2ab a2+b2≥2ab
- a 3 + b 3 + c 3 ≥ 3 a b c a^3+b^3+c^3\ge 3abc a3+b3+c3≥3abc
- 辅助角公式不等式: − a 2 + b 2 ≤ a s i n A + b c o s A ≤ a 2 + b 2 -\sqrt{a^2+b^2}\leq asinA+bcosA\leq \sqrt{a^2+b^2} −a2+b2≤asinA+bcosA≤a2+b2
-
四大均值不等式:调和平均数 ≤ \le ≤ 几何平均数 $\le $ 算术平均数 ≤ \le ≤平方平均数
不等式 表达式 意义 调和平均数 1 1 a 1 + 1 a 2 + . . . + 1 a n \frac{1}{\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}} a11+a21+...+an11 单价的均值,有三种铅笔,单价分别是 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3,则购买金额固定,平均单价为 1 1 a 1 + 1 a 2 + 1 a 3 \frac{1}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}} a11+a21+a311 几何平均数 a 1 a 2 . . . a n n \sqrt[n]{a_1a_2...a_n} na1a2...an 增益率的平均值。 算数平均数 a 1 + a 2 + . . . + a n n \frac{a_1+a_2+...+a_n}{n} na1+a2+...+an 数据集平均值。 平方平均数 a 1 2 + a 2 2 + . . . + a n n n \sqrt{\frac{a_1^2+a_2^2+...+a_n^n}{n}} na12+a22+...+ann 平均值+数据集稳定性。
重要性质
-
定理一(必要条件):若函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)存在偏导数,且在该点取得极值,则有 f x ′ ( x 0 , y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 f^{'}_x(x_0,y_0) = 0,f^{'}_y(x_0,y_0) = 0 fx′(x0,y0)=0,fy′(x0,y0)=0
-
定理二(充要条件):若函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域内具有一阶和二阶连续偏导数,且 f x ′ ( x 0 , y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 f^{'}_x(x_0,y_0) = 0,f^{'}_y(x_0,y_0) = 0 fx′(x0,y0)=0,fy′(x0,y0)=0,令 A = f x x ′ ′ ( x 0 , y 0 ) , B = f x y ′ ′ ( x 0 , y 0 ) , C = f y y ′ ′ ( x 0 , y 0 ) A = f^{''}_{xx}(x_0,y_0),B = f^{''}_{xy}(x_0,y_0),C = f^{''}_{yy}(x_0,y_0) A=fxx′′(x0,y0),B=fxy′′(x0,y0),C=fyy′′(x0,y0)则:
- 当 A C − B 2 > 0 AC-B^2>0 AC−B2>0时,具有极值, A < 0 A<0 A<0时取得极大值: A > 0 A>0 A>0时取得极小值
- 当 A C − B 2 < 0 AC-B^2<0 AC−B2<0时,没有极值
- 当
A
C
−
B
2
=
0
AC-B^2=0
AC−B2=0时,判别式失效,不确定,需要另行讨论,如果判别法失效需要使用极值定义来判断。
- 定义法证明 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)是极值点:保号性,证明 lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) > f ( x 0 , y 0 ) \lim\limits_{(x,y)\to (x_0,y_0)}f(x,y)>f(x_0,y_0) (x,y)→(x0,y0)limf(x,y)>f(x0,y0)恒成立。
- 定义法证明 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)不是极值点:找两个特殊路径,例如 y = k x 或 y = x 2 y = kx或y = x^2 y=kx或y=x2,如果两个特殊路径,求 lim x → x 0 f ( y , x ) \lim\limits_{x\to x_0}f(y,x) x→x0limf(y,x),如果极限不相等,则说明不是极值点。
-
最值应用问题:
- 依据:函数 f f f在闭区间上连续 ⟶ \longrightarrow ⟶ 函数 f f f在闭区间上可达到最值
- 最值的可疑点:驻点,定义域边界点
- 如果区间内部最值存在,且只有一个极值点 P P P时,则极值等于最值
解题思路
-
非条件极值:
-
方法:
- 必要条件: f x ′ ( x 0 , y 0 ) = 0 f^{'}_x(x_0,y_0) = 0 fx′(x0,y0)=0且 f y ′ ( x 0 , y 0 ) = 0 f^{'}_y(x_0,y_0) = 0 fy′(x0,y0)=0
- 充要条件:判别式法,如果判别式法失效,就用定法法判断。
-
例题:
-
求二元函数 f ( x , y ) = x 2 ( 2 + y 2 ) + y l n y f(x,y) = x^2(2+y^2)+ylny f(x,y)=x2(2+y2)+ylny的极值
-
设 f ( x , y ) f(x,y) f(x,y)在点 ( 0 , 0 ) (0,0) (0,0)的某邻域内连续,且满足 lim ( x , y ) → ( 0 , 0 ) f ( x , y ) − f ( 0 , 0 ) x 2 + 1 − c o s 2 y = − 3 \lim\limits_{(x,y)\to (0,0)}\frac{f(x,y)-f(0,0)}{x^2+1-cos^2y} = -3 (x,y)→(0,0)limx2+1−cos2yf(x,y)−f(0,0)=−3,则函数 f ( x , y ) f(x,y) f(x,y)在点 ( 0 , 0 ) (0,0) (0,0)上()
A.取到极大值,B. 取到极小值,C.不取极值,D.无法确定是否取到极值。
-
已知函数 f ( x , y ) f(x,y) f(x,y)在点 ( 0 , 0 ) (0,0) (0,0)的某邻域内连续,且满足 lim ( x , y ) → ( 0 , 0 ) f ( x , y ) − x y ( x 2 + y 2 ) 2 = 1 \lim\limits_{(x,y)\to (0,0)}\frac{f(x,y)-xy}{(x^2+y^2)^2} = 1 (x,y)→(0,0)lim(x2+y2)2f(x,y)−xy=1,则()(tip:答案:A,这道题比较难,方法是举特例,就令 f ( x , y ) = ( x 2 + y 2 ) 2 + x y f(x,y) = (x^2+y^2)^2+xy f(x,y)=(x2+y2)2+xy,常规方法是使用脱帽法,把极限号去掉: f ( x , y ) = ( x 2 + y 2 ) 2 + x y + O [ ( x 2 + y 2 ) 2 ] f(x,y) = (x^2+y^2)^2+xy+O[(x^2+y^2)^2] f(x,y)=(x2+y2)2+xy+O[(x2+y2)2],然后使用判别式法计算。)
A.点 ( 0 , 0 ) (0,0) (0,0)不是 f ( x , y ) f(x,y) f(x,y)的极值点,B.点 ( 0 , 0 ) (0,0) (0,0)是 f ( x , y ) f(x,y) f(x,y)的极大值点。
C.点 ( 0 , 0 ) (0,0) (0,0)是 f ( x , y ) f(x,y) f(x,y)的极大值点。D. 无法判断是否是极值点。
-
设函数 z = z ( x , y ) z = z(x,y) z=z(x,y)是由方程 2 x 2 + 2 y 2 + z 2 + 8 x z − z + 8 = 0 2x^2+2y^2+z^2+8xz-z +8 = 0 2x2+2y2+z2+8xz−z+8=0确定,求 z = z ( x , y ) z = z(x,y) z=z(x,y)的极值。
-
-
-
条件极值:
-
极值问题:
- 无条件极值:对自变量只有定义域限制
- 条件极值:对自变量除了定义限制外,还有其他条件限制
-
条件极值常见类型
- 求 z = f ( x , y ) z = f(x,y) z=f(x,y)在 φ ( x , y ) = 0 \varphi(x,y) = 0 φ(x,y)=0,(本质:一个自变量)下的极值(最值)
- 求 u = f ( x , y , z ) u = f(x,y,z) u=f(x,y,z)在 φ ( x , y , z ) = 0 , ψ ( x , y , z ) = 0 \varphi(x,y,z) = 0,\psi(x,y,z) = 0 φ(x,y,z)=0,ψ(x,y,z)=0(本质:一个自变量极值)下的极值(最值)
- 求 u = f ( x , y , z ) 在 φ ( x , y , z ) = 0 u = f(x,y,z)在\varphi(x,y,z) = 0 u=f(x,y,z)在φ(x,y,z)=0,(本质:两个自变量)下的极值(最值)
-
条件极值求法:
-
带入法
- 适用场景:把条件带入后,要求极值的函数变得简单。
- 方法:把条件表达式带入求解表达式中,消去一个自变量,并且消去一个条件条件表达式
- 例题:
- 求函数 z = x 2 4 + 20 x + y 2 2 + 6 y + 10 z = \frac{x^2}{4}+20x+\frac{y^2}{2}+6y+10 z=4x2+20x+2y2+6y+10在 x + y = 5 x+y = 5 x+y=5下的最值
-
拉格朗日乘数法
-
使用场景:使用带入法比较困难,或者无法使用参数法。
-
case1:在条件 φ ( x , y ) = 0 \varphi(x,y) = 0 φ(x,y)=0下,求函数 z = f ( x , y ) z= f(x,y) z=f(x,y)的极值
- 引入拉格朗日函数: F = f ( x , y ) + λ φ ( x , y ) → 变成三元函数,自变量是 x , y , λ F = f(x,y) + \lambda\varphi(x,y) \to 变成三元函数,自变量是x,y,\lambda F=f(x,y)+λφ(x,y)→变成三元函数,自变量是x,y,λ
- 解方程组: { F x ′ = f x ′ + λ φ x ′ = 0 F y ′ = f y ′ + λ φ y ′ = 0 F λ ′ = φ ( x , y ) = 0 \begin{cases}F^{'}_x = f^{'}_x+\lambda\varphi^{'}_x = 0\\F^{'}_y = f^{'}_y+\lambda\varphi^{'}_y = 0\\F^{'}_\lambda = \varphi(x,y) = 0\end{cases} ⎩ ⎨ ⎧Fx′=fx′+λφx′=0Fy′=fy′+λφy′=0Fλ′=φ(x,y)=0
-
case2:在条件 φ ( x , y , z ) = 0 , ψ ( x , y , z ) = 0 \varphi(x,y,z) = 0,\psi(x,y,z) = 0 φ(x,y,z)=0,ψ(x,y,z)=0下,求函数 u = f ( x , y , z ) u = f(x,y,z) u=f(x,y,z)的极值
- 设 F = f ( x , y , z ) + λ φ ( x , y , z ) + μ ψ ( x , y , z ) F = f(x,y,z)+\lambda\varphi(x,y,z)+\mu\psi(x,y,z) F=f(x,y,z)+λφ(x,y,z)+μψ(x,y,z)
- 解方程组: { F x ’ = f x ′ + λ φ x ′ + μ ψ x ′ = 0 F y ’ = f y ′ + λ φ y ′ + μ ψ y ′ = 0 F z ’ = f z ′ + λ φ z ′ + μ ψ z ′ = 0 F λ ′ = φ ( x , y , z ) = 0 F μ ′ = ψ ( x , y , z ) = 0 \begin{cases}F^{’}_x = f^{'}_x+\lambda\varphi^{'}_x+\mu\psi^{'}_x = 0\\F^{’}_y = f^{'}_y+\lambda\varphi^{'}_y+\mu\psi^{'}_y = 0\\F^{’}_z = f^{'}_z+\lambda\varphi^{'}_z+\mu\psi^{'}_z = 0\\F^{'}_\lambda = \varphi(x,y,z) = 0\\F^{'}_\mu = \psi(x,y,z) = 0\end{cases} ⎩ ⎨ ⎧Fx’=fx′+λφx′+μψx′=0Fy’=fy′+λφy′+μψy′=0Fz’=fz′+λφz′+μψz′=0Fλ′=φ(x,y,z)=0Fμ′=ψ(x,y,z)=0
-
难点:方程组的求解方法,如果是齐次式,比较好求,但是大多数都不是齐次式,所以下面是两个中非齐次式的方程组的求解方法
-
我们有方程组
F x ′ = f x ′ + λ φ x ′ = 0 (1) F^{'}_x = f^{'}_x+\lambda\varphi^{'}_x = 0 \tag{1} Fx′=fx′+λφx′=0(1)
F y ′ = f y ′ + λ φ y ′ = 0 (2) F^{'}_y = f^{'}_y+\lambda\varphi^{'}_y = 0\tag{2} Fy′=fy′+λφy′=0(2)
F λ ′ = φ ( x , y ) = 0 (3) F^{'}_\lambda = \varphi(x,y) = 0\tag{3} Fλ′=φ(x,y)=0(3) -
我们主要的思想是通过 ( 1 ) (1) (1)式和 ( 2 ) (2) (2)式求出 x , y x,y x,y的关系,然后带入 ( 3 ) (3) (3)式中,所以有两个方法,可以通过 ( 1 ) , ( 2 ) (1),(2) (1),(2)两式得出 x , y x,y x,y的关系
- 消去
λ
\lambda
λ:
- 当
λ
=
0
\lambda = 0
λ=0时,求解出
x
,
y
x,y
x,y的关系,带入
(
3
)
(3)
(3)式中是否成立,成立就是一个解
- 如果得到的关系式类似于是 24 x 2 + 7 x y − 6 y 2 = 0 24x^2+7xy-6y^2 = 0 24x2+7xy−6y2=0这种形式的,可以把 x 或 y x或y x或y的其中一个当常数,解一元二次方程,解一元二次方程有两种方法,十字交叉法,公式法: x = − b ± b 2 − 4 a c 2 a x = \frac{-b\pm \sqrt{b^2-4ac}}{2a} x=2a−b±b2−4ac
- 当 λ ≠ 0 \lambda \neq 0 λ=0时,有 { f x ′ = − λ φ x ′ f y ′ = − λ φ y ′ \begin{cases}f^{'}_x = -\lambda\varphi^{'}_x\\f^{'}_y =-\lambda\varphi^{'}_y\end{cases} {fx′=−λφx′fy′=−λφy′,两式相除可以消去 λ \lambda λ,得出 x , y x,y x,y关系式
- 当
λ
=
0
\lambda = 0
λ=0时,求解出
x
,
y
x,y
x,y的关系,带入
(
3
)
(3)
(3)式中是否成立,成立就是一个解
- 求
λ
\lambda
λ
- ( 1 ) − ( 2 ) (1)-(2) (1)−(2)得出 λ = ξ ( x , y ) \lambda = \xi(x,y) λ=ξ(x,y),然后把 λ \lambda λ随便带入 ( 1 ) 或 ( 2 ) (1)或(2) (1)或(2)式,得出 x , y x,y x,y的关系
- 消去
λ
\lambda
λ:
-
-
例题:
- z = x 2 + y 2 在 x 2 + x y + y 2 = 1 z = x^2+y^2在x^2+xy+ y^2 = 1 z=x2+y2在x2+xy+y2=1,下的最值
- 求 u = x y + 3 y z u = xy+3yz u=xy+3yz在 x 2 + y 2 + z 2 = 10 x^2+y^2+z^2 = 10 x2+y2+z2=10条件下的最最大值和最小值。
- 求 u = x 2 + y 2 + z 2 u = x^2+y^2+z^2 u=x2+y2+z2在 x a + y b + z c = 1 \frac{x}{a}+\frac{y}{b}+\frac{z}{c} = 1 ax+by+cz=1上的最小值(这个也可以使用几何意义,等讲到空间几何时候可能会好做一点)。
- x 2 + 4 y 2 = 4 x^2+4y^2 = 4 x2+4y2=4上求一点,使其到 2 x + 3 y − 6 = 0 2x+3y-6 = 0 2x+3y−6=0上的距离最短。
-
-
参数法:
- 使用场景:条件方程可以很容易的写成参数方程形式。
- 在条件 φ ( x , y ) = 0 \varphi(x,y) = 0 φ(x,y)=0下,求函数 z = f ( x , y ) z = f(x,y) z=f(x,y)的极值 ⟶ φ ( x , y ) = 0 ⇒ x = x ( t ) , y = y ( t ) \mathop{\longrightarrow}\limits^{\varphi(x,y) =0\Rightarrow x = x(t),y = y(t)} ⟶φ(x,y)=0⇒x=x(t),y=y(t)求一元函数 z = f ( x ( t ) , y ( t ) ) z = f(x(t),y(t)) z=f(x(t),y(t))的无条件极值问题。
- 注意点:
- 参数法适用场景:条件为一个:圆,椭圆,星形线。
- 要注意 t t t的范围。
- 例题:
- 求 z = x 2 − 2 x y − y 2 z = x^2-2xy-y^2 z=x2−2xy−y2,在 x 2 + y 2 = 4 x^2+y^2 = 4 x2+y2=4下的最值。
-
不等式法(不通用)
- 常用不等式
- a 1 + a 2 + . . . + a n ≥ n a 1 a 2 . . . a n n a_1+a_2+...+a_n \geq n\sqrt[n]{a_1a_2...a_n} a1+a2+...+an≥nna1a2...an
- a 2 + b 2 ≥ 2 a b a^2+b^2\geq 2ab a2+b2≥2ab
- 例题:
- 设 x , y , z > 0 x,y,z>0 x,y,z>0,求 f ( x , y , z ) = x y z 3 f(x,y,z) = xyz^3 f(x,y,z)=xyz3在 x 2 + y 2 + z 2 = 5 R 2 ( R 为正常数 ) x^2+y^2+z^2 = 5R^2(R为正常数) x2+y2+z2=5R2(R为正常数)下的最大值(tip: x 2 + y 2 + 1 3 z 2 + 1 3 z 2 + 1 3 z 2 ≥ 5 x 2 y 2 z 6 3 × 3 × 3 5 x^2+y^2+\frac{1}{3}z^2+\frac{1}{3}z^2+\frac{1}{3}z^2\geq 5\sqrt[5]{\frac{x^2y^2z^6}{3\times 3\times 3}} x2+y2+31z2+31z2+31z2≥553×3×3x2y2z6)
- 设 x , y , z > 0 x,y,z>0 x,y,z>0,求 f ( x , y , z ) = 1 x y z f(x,y,z) = \frac{1}{xyz} f(x,y,z)=xyz1在 x 2 4 + y 2 4 + z 2 9 = 1 \frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{9} = 1 4x2+4y2+9z2=1的最小值。(tip:可以先求 x y z xyz xyz的极大值,就可求出 1 x y z \frac{1}{xyz} xyz1的极小值)
- 常用不等式
-
-
-
求有界闭区间上的最值
- 回忆:一元函数的有界区间最值 = { ( a , b ) 内极值点 端点 a , b = \begin{cases}(a,b)内极值点 \\ 端点a,b\end{cases} ={(a,b)内极值点端点a,b
- z = f ( x , y ) z = f(x,y) z=f(x,y)在有界闭域 D : ρ ( x , y ) = 0 D:\rho(x,y) = 0 D:ρ(x,y)=0上的最值 = { D 内极值点 D 边界(条件极值) = \begin{cases}D内极值点\\ D边界(条件极值)\end{cases} ={D内极值点D边界(条件极值)
- 求解步骤
- D 内 D内 D内,求 { ∂ z ∂ x = 0 ∂ z ∂ y = 0 ⇒ ( x i , y i ) \begin{cases}\frac{\partial z}{\partial x} = 0\\\frac{\partial z}{\partial y} = 0\end{cases}\Rightarrow (x_i,y_i) {∂x∂z=0∂y∂z=0⇒(xi,yi)都是可疑,如果让求最值,不用使用判别式。
- D 边界 D边界 D边界,求 z = f ( x , y ) z = f(x,y) z=f(x,y)在 ρ ( x , y ) = 0 \rho(x,y) = 0 ρ(x,y)=0条件下的最值(先求条件极值,然后比较)
- 例题:
- 求 z = x 2 + 2 y 2 − 2 x 2 y 2 z = x^2+2y^2-2x^2y^2 z=x2+2y2−2x2y2在区域 D : x 2 + y 2 ≤ 1 D:x^2+y^2\leq1 D:x2+y2≤1上的最小值和最大值。