自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 Cmake 基础

1. C++的编译过程使用 等编译工具,从源码生成最终的可执行文件一般有这几步:预处理(Preprocess)、编译(Compile)、汇编(assemble)、链接(link)。举例:int main(int argc, char** argv)首先来看 char*是什么?再来看 char** 是什么言归正传。在进行 命令行输入时,输入 可以看到对应命令:-E Preprocess only; do not compile, assemble or link

2025-04-30 16:07:09 498

原创 STL标准模板库

这些容器按照特定的顺序存储数据,可以通过位置访问数据。它们类似于“数组”或“链表”,但功能更强大。C++ 官方送给你的一个巨大的“百宝箱”,里面装满了各种你经常需要用的工具。容器适配器是对现有容器的一层封装,提供了不同的。常见的有栈、队列和优先队列。存储数据,并且自动保持元素的。写的,非常灵活和高效!迭代器通过解引用操作。4. STL 算法类别。

2025-04-28 23:39:40 335

原创 C++中的智能指针

是标准库(Standard Library)中的命名空间(namespace)的缩写。返回的是指向 <Account> 类型的指针 p2, 可以想象成一张纸条,上边写着 <Account> 类型房子的 地址。返回的是指向 <int> 类型的指针 p1, 可以想象成一张纸条,上边写着 <int> 类型房子的 地址。比喻: 建造了一栋 <Account> 类型的房子,里边有一个 Alice 和 1000。比喻: 建造了一栋 <int> 类型的房子,里边有一个 100。auto:能够自动识别类型。

2025-04-28 22:00:42 522

原创 补充知识:

可以是任何数据类型(如基本数据类型、类、结构体等),它指定了向量可以存储的元素类型。// 修改引用,my_num也会被修改。1. 引用本质上并不是一个新的变量,而是直接绑定到原来的变量上。是变量,是这个向量类型的一个实例,它实际上存储了一个。是数据结构的类型,表示一个可以存储。2.关于vector。

2025-04-28 07:47:00 160

原创 C++中的OPP(面向对象编程)

类声明:放在头文件.h或.hpp)中,包含类的成员变量和成员函数的声明。成员函数定义:放在源文件.cpp)中,包含成员函数的具体实现。类的声明:(在头文件中):成员函数的定义:1.6 构造函数private里初始化是给你提供一个“默认出厂设置”,构造函数是给你“定制初始化”,让你可以自己决定初始值。所以如果你不传值,就用private里设的默认值。如果你想自己设值,就用构造函数传值。

2025-04-28 07:46:17 646

原创 六、函数和指针

引用传递是把变量的别名传给函数,函数内部对参数的修改会影响原变量。和“值传递”不同,值传递只是传一个副本,函数修改不会影响原变量。

2025-04-26 04:23:47 965

原创 五、字符和字符串

这会在内存中创建一个字符数组,数组的内容是HelloWorld!, 和最后的空字符'\0'。

2025-04-25 14:25:24 305

原创 四、C++程序流程

特点说明枚举值从 0 开始,自动递增帮助你用名字代替数字,代码更清晰属于“用户自定义类型”3. for循环(1).基本形式 :for(初始化参数,参数条件,参数增量){循环体(2).基于范围的循环for (类型 名称:数组)4. while循环。

2025-04-25 00:23:15 274

原创 三、C++的数组和容器

vector特点说明动态大小自动扩容,不用手动指定大小支持下标访问[]使用方式跟普通数组类似有丰富的函数.size().clear()等类型安全是模板类,可以放任何类型的元素C++ 提供了标准模板库 STL容器名特点/作用vector动态数组,自动扩容,最常用arrayC++11 的固定大小数组,功能更丰富list双向链表,插入删除快deque双端队列,头尾都能高效插入/删除map关联容器,key-value 键值对set自动排序且无重复元素集合哈希表结构,查找更快vector。

2025-04-24 20:46:28 366

原创 二、C++的变量和常量

变量就是用来存储数据的“盒子”,你可以把值(比如数字、字符)放进去,也可以随时拿出来用。就像你在做数学题时,常用x和y来表示数一样,C++ 中你也可以用变量来保存和操作数据。工具用来做什么sizeof查看类型或变量占多少字节climits查看整型类型(int, short 等)的取值范围4.常量常量(constant)是在程序运行过程中值不发生改变的数据。constcout << "圆周率是:" << PI << endl;return 0;#define是一种预处理器指令,在编译前会把所有。

2025-04-24 17:37:59 513

原创 C++程序结构

1.关键字(约90个)

2025-04-24 16:16:10 260

原创 Transformer中文image caption(看图说话)

一、img caption简介1. Image Caption:对图像的自然语言描述补充知识: 多模态学习(CV计算机视觉 + NLP自然语言处理)二. Transformer imag caption 流程2.1 encoder 在swin transformer中已经讲过,下面来看decoder部分是解码器生成序列时的第一个输入,用来告诉模型:“现在开始生成句子了”如果单纯的比较encoder 和 decoder 部分,我们会发现,decoeder多了个中间的部分,其余的很。

2025-04-20 00:03:44 277

原创 Swin-Transformer-Object-Detection训练自己的数据

(4)修改configs\swin\mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco.py第69行max_epochs数量。(1)修改configs\_base_\models\mask_rcnn_swin_fpn.py第54、73行num_classes为自己的类别数。(5)修改configs\_base_\datasets\coco_instance.py第31-32行数据加载情况。

2025-04-18 21:20:04 790

原创 Swin-transformer道路分割

Token 就是 Transformer 模型的“输入单位”。模态token 单位示例文本单词、子词、字符图像patch(图像块)16×1616 \times 1616×16 大小的图像块音频小的时间窗或频谱块一小段音频或频谱片段。

2025-04-17 18:27:42 668

原创 ResNet(残差网络)

一 、ResNet的背景和作用,反而可能导致训练困难;成为深层网络中的瓶颈;即使使用了 BatchNorm、ReLU 等技巧,仍难以训练 30 层以上的网络。为了解决这些问题,微软研究院的 He Kaiming 等人在 2015 年提出了,并在 ImageNet 竞赛中以极低的错误率获得冠军二、ResNet如何解决退化问题?举例:通道不变的时候通道变化的时候。

2025-04-17 17:14:59 290

原创 GAN的基本原理

降维(Dimensionality Reduction):如PCA、t-SNE。分类(Classification):如手写数字识别、垃圾邮件识别。(1)某长度为100的一维数组的 随机噪声向量 输入。回归(Regression):如房价预测、温度预测。聚类(Clustering):如客户分群、图像分组。(3)用监督学习优化 生成网络和监督网络的Loss。1.三个单词的组成(最终的目标是生成一些图片),目标是学习输入到输出(标签)之间的映射关系。GAN(生成对抗网络)的生成网络。主成分分析(PCA)

2025-04-17 15:18:48 249

原创 动作识别 Action Recognition简介

一、Activity(持续时间较长的行为)、Action(短时间的行为动作)、Hand gesture(单人的手势)二、动态时间规整(Dynamic Time Warping, DTW)(1)两组序列特征的相似度如何?算法:基于骨架、基于视频。(2)两点一一对应关系。

2025-04-15 20:14:22 239

原创 人体骨骼点动作识别控制智能家居

将每⼀类坐标⽤⼀个概率图来表示,对图⽚中的每个像素位置都给⼀个概率,表示该点属于对应 类别关键点的概率;(1)创建新的环境,安装pytorch、mediapipe、pandas、requests等。(2)运行pose_collect.py文件,结果储存在data文件中。将关键点的坐标作为最后网络需要回归的目标(target)2.2 训练关键点训练样本(单人,使用回归网络法)(1)在新的环境里安装 jupyter lab。1.2 基于概率图(Heatmap)单人、多人、2D、3D。(3)删除不合适的图片。

2025-04-14 20:37:05 283

原创 目标检测的常用指标

前传耗时:输入图像到输出结果耗时,包括前处理(如归⼀化)、网络前传耗时、后处理(如NMS)注意:P3和P4在GB中都检测出来了,则取最高的为TP,另一个则为FP。浮点运算量(Flops):处理⼀张图所需要的浮点运算数量,与硬件⽆关。例如:在使用yolov5检测的时候,有人和其他多种帽子(多个类别)mAP:衡量模型在所有类型上的好坏;COCO中AP与mAP不做区分,是对所有类别求的平均值。FPS:每秒帧数,每秒钟能处理的图像数量。一、性能指标(检测精度和检测速度)AP:衡量模型在每个类别上的好坏。

2025-04-13 18:32:03 159

原创 Yolo v5训练自己自定义模型--全过程

YOLO会⾃动将 ../datasets/CHV_dataset/images/train/ppe_1106.jpg 中的 /images/ 替换 成 /labels/ 以寻找它的标签,如 ../datasets/CHV_dataset/labels/train/ppe_1106.txt ,所以根据 这个原则,我们⼀般可以: images ⽂件夹下有 train 和 val ⽂件夹,分别放置训练集和验证集图⽚;改成nc: 6 # 类别数量(这是我自己的,每个人的训练的类别数量都是不一样的)

2025-04-08 23:58:25 928

原创 Yolo基本原理:You only look once

计算机视觉的三大任务:分类、检测(分类+定位)、分割。

2025-04-01 23:04:36 86

原创 卷积神经网络的概念

2.池化层:降低维度和计算量、防止过拟合、模型更加稳定,泛化能力更强。1.过滤器:本质是特征检测器,CNN中也叫卷积核(kernel)最大值池化、平均值池化。

2025-04-01 22:33:50 186

原创 图像分割的方法

标记图像每个像素的类别,因为我们需要预测图像中的每个像素,因此此任务通常被称为密集预测。比语义分割更进一步,除了像素级分类,还需要对分别对类的每个实例进行分类。

2025-04-01 22:13:52 97

原创 5种人脸检测方法和4种人脸识别方法

一、Haar特征:1. 边缘特征检测 2. 线状特征检测。三、CNN:构造人脸检测器(预训练检测模型)三、LBPH传统方法(局部二进制模式直方图)四、CNN深度学习方法(retset)四、SSD:将图片缩放至模型输入尺寸。一、Eigen(特征脸)

2025-04-01 21:49:34 196

原创 传统形态学方法检测目标

4.闭合:膨胀+侵蚀,主要用于闭合主题内的小洞,cv2.morphologyEx(gary.copy(),cv2.Morph_CLOSE,kernel)3张开:侵蚀+膨胀cv2.morphologyEx(gary.copy(),cv2.Morph_OPEN,kernel)2.膨胀 cv2.dilate(gary.copy(),kernel,interations=1)1.侵蚀 cv2.erode(gary.copy(),kernel,interations=1)一、传统的形态学方法检测目标。

2025-03-15 16:34:28 207

原创 3.Opencv玩转图像和视频

2.Opencv库包含了很多计算机视觉领域的常见算法:目标检测、目标跟踪等。1.Opencv支持对图像的缩放、旋转、绘制文字图形等基础操作。matplotlinb颜色显示顺序: R G B。3. opencv颜色显示顺序: B G R。

2025-03-15 11:17:18 96

原创 图像的本质是什么? Numpy和图像基础

数字8比周围更亮一些。亮度:0-255,全黑代表0(无)。越接近亮度,数字越大。例如:Numpy读取彩色照片时,照片大小是540×480。3个颜色通道(RGB):每一个通道的本质是一张灰度图。0,1,2分别是红色、绿、蓝色通道。灰度图片每个数字高低表示亮暗程度。Python 的切片操作遵循。1. python的切片规则。彩色图片:红绿蓝组合表达。行:480个像素高度。列:540个像素宽度。

2025-03-12 21:52:06 205

原创 快速搞定python环境

创建指定python版本环境 conda create --name 环境名称 python=3.7。创建环境 conda create --name 环境名称(英文)删除环境 conda remove --name环境 --all。进入环境 cnda activate 环境名称。列出所有环境:conda env list。退出环境 conda deactivate。conda:几千个包(大部分的包)1.创建python 虚拟环境。pip:150000个包。

2025-03-05 23:45:04 137

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除