文献阅读--基于深度卷积集成网络的视网膜多种疾病筛查和识别方法
深层卷积神经网络可以自动完成特征提取,并取得更好的效果,本文将谷歌大脑团队提出的 EfficientNet作为模型的主干网络部分进行特征提取,该网络可对网络的深度、宽度和输入的分辨率进行适当的调整,以达到更好的特征提取效果。X为输入的视网膜眼底图像,Y为相应图像的标签,f(*)为主干网络对图像信息编 码后预测为正类的概率,N为疾病类别数量,σ(*)为Sigmoid函数,α和β为超 参数,用于平衡两个任务损失函数所占比重。最后,多个网络模型进行集成,并将最终的结果用于疾病筛查和识别。
原创
2023-12-18 12:43:22 ·
830 阅读 ·
1 评论