顺序表应用7:最大子段和之分治递归法

Description

给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。

递归调用总次数的获得,可以参考以下求菲波那切数列的代码段中全局变量count的用法:

#include
int count=0;
int main()
{
int n,m;
int fib(int n);
scanf("%d",&n);
m=fib(n);
printf("%d %d\n",m,count);
return 0;
}
int fib(int n)
{
int s;
count++;
if((n==1)||(n==0)) return 1;
else s=fib(n-1)+fib(n-2);
return s;
}

Input

第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;

第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。

Output

一行输出两个整数,之间以空格间隔输出:

第一个整数为所求的最大子段和;

第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。

Samples

Sample #1
Input 

6 -2 11 -4 13 -5 -2

Output 
20 11
#include <bits/stdc++.h>
using namespace std;
int n,a[50005],cnt=0;
int getson(int l,int r,int mid){
    //计算在给定范围 [l, r] 内以 mid 为中间位置的子数组的最大子数组和
	int s1=0,s2=0,ans=0;
	for(int i=mid;i>=l;i--){
		ans+=a[i];
		s1=max(s1,ans);
	}
	ans=0;
	for(int i=mid+1;i<=r;i++){
		ans+=a[i];
		s2=max(s2,ans);
	}
	return s1+s2;
}
int f(int l,int r){
	cnt++;
	if(l==r) return a[l];
	int mid=(l+r)/2;
	int x1=f(l,mid);//获取左子问题的结果x1
	int x2=f(mid+1,r);//右子问题的结果x2
	int x3=getson(l,r,mid);//getson函数计算得到的跨越中间位置的子数组和x3
	return max(x1,max(x2,x3));
    //返回 x1、x2 和 x3 中的最大值作为当前范围内的最大子数组和
}
int main(){
	cin>>n;
	for(int i=0;i<n;i++){
		cin>>a[i];
	}
	int x=f(1,n);
	cout<<x<<" "<<max(cnt,0)<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值