Description
给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。
递归调用总次数的获得,可以参考以下求菲波那切数列的代码段中全局变量count的用法:
#include
int count=0;
int main()
{
int n,m;
int fib(int n);
scanf("%d",&n);
m=fib(n);
printf("%d %d\n",m,count);
return 0;
}
int fib(int n)
{
int s;
count++;
if((n==1)||(n==0)) return 1;
else s=fib(n-1)+fib(n-2);
return s;
}
Input
第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;
第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。
Output
一行输出两个整数,之间以空格间隔输出:
第一个整数为所求的最大子段和;
第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。
Samples
Sample #1
Input
6 -2 11 -4 13 -5 -2
Output
20 11
#include <bits/stdc++.h>
using namespace std;
int n,a[50005],cnt=0;
int getson(int l,int r,int mid){
//计算在给定范围 [l, r] 内以 mid 为中间位置的子数组的最大子数组和
int s1=0,s2=0,ans=0;
for(int i=mid;i>=l;i--){
ans+=a[i];
s1=max(s1,ans);
}
ans=0;
for(int i=mid+1;i<=r;i++){
ans+=a[i];
s2=max(s2,ans);
}
return s1+s2;
}
int f(int l,int r){
cnt++;
if(l==r) return a[l];
int mid=(l+r)/2;
int x1=f(l,mid);//获取左子问题的结果x1
int x2=f(mid+1,r);//右子问题的结果x2
int x3=getson(l,r,mid);//getson函数计算得到的跨越中间位置的子数组和x3
return max(x1,max(x2,x3));
//返回 x1、x2 和 x3 中的最大值作为当前范围内的最大子数组和
}
int main(){
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
}
int x=f(1,n);
cout<<x<<" "<<max(cnt,0)<<endl;
return 0;
}