PAT 1001 害死人不偿命的(3n+1)猜想

题目:

卡拉兹(Callatz)猜想:对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

c205e4c4eb104466aa4461211d8ee51a.png

解题思路:

对于一个正整数n,首先判断n是否为1,如果为1则不需要砍;如果不为1,我们需要判断它是奇数还是偶数,如果它是偶数那么n砍掉一半为n/2,剩余的n/2继续砍,砍完剩下的再继续一半一半地砍下去(即num=num/2),每砍一次用count++ 计数一次,直到最后剩余1;对于一个正整数n,如果它是奇数,那么利用题中所给的卡拉兹的猜想(把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1),(3n+1)砍掉一半为(3n+1)/2,然后继续砍下去(即num=(3*num+1)/2),每砍一次用count++计数一次,直到最后剩余1 。

代码实现:

import java.util.Scanner;
 public class Main{
     public static void main(String[] args){
         Scanner sc=new Scanner(System.in);
         int num=sc.nextInt();
         int count=0;
         while(num!=1){
             if(num%2==0){
                 num=num/2;
                 count++;
             }
             else{
                 num=(3*num+1)/2;
                 count++;
             }
         }
         System.out.println(count);
     }

 }

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值