题目:
卡拉兹(Callatz)猜想:对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
解题思路:
对于一个正整数n,首先判断n是否为1,如果为1则不需要砍;如果不为1,我们需要判断它是奇数还是偶数,如果它是偶数那么n砍掉一半为n/2,剩余的n/2继续砍,砍完剩下的再继续一半一半地砍下去(即num=num/2),每砍一次用count++ 计数一次,直到最后剩余1;对于一个正整数n,如果它是奇数,那么利用题中所给的卡拉兹的猜想(把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1),(3n+1)砍掉一半为(3n+1)/2,然后继续砍下去(即num=(3*num+1)/2),每砍一次用count++计数一次,直到最后剩余1 。
代码实现:
import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int num=sc.nextInt();
int count=0;
while(num!=1){
if(num%2==0){
num=num/2;
count++;
}
else{
num=(3*num+1)/2;
count++;
}
}
System.out.println(count);
}
}