'''
from matplotlib import pyplot as plt
x=range(2,26,2)
y=[15,13,14.5,17,20,25,26,26,27,22,18,15]
#绘图
plt.plot(x, y)
#展示图形
plt.show()
'''
#设置图片大小
'''
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(20,8),dpi=80)
x=range(2,26,2)
y=[15,13,14.5,17,20,25,26,26,27,22,18,15]
plt.plot(x, y)
#plt.savefig("./t1.png")--表示为:保存图片。另一种保存方式:.svg可以不失真。
plt.show()
'''
#设置x轴,设置y轴
'''
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(10,4),dpi=80)
x=range(2,26,2)
y=[15,13,14.5,17,20,25,26,26,27,22,18,15]
plt.plot(x, y)
plt.xticks(x)
plt.yticks(range(min(y),max(y)+1))
#上述代码也可以更换为:_xtick_labels = [i/2 for i in range(4,49)]
plt.show()
'''
#问题:如果列表a表示10点到12点的每一分钟的气温,绘制折线图观察每一分钟气温的变化情况
#a=[random.randint(20,35)for i in range(120)]
'''
import matplotlib.pyplot as plt
import ra
Python数据分析-折线图
最新推荐文章于 2024-03-03 19:56:20 发布
本文深入探讨了如何使用Python的matplotlib库进行数据分析并绘制折线图。通过实例代码,详细解释了创建、自定义轴标签、设置图例和调整线条样式等关键步骤,为数据可视化提供实用技巧。
摘要由CSDN通过智能技术生成