山东大学数据结构课设第一部分实验二——外排序

题目要求:

应用输者树结构模拟实现外排序。

基本要求:

1. 设计并实现 最小输者树 结构 ADT ADT 中应包括初始化、返回赢者,重构等基本操作。
2. 应用最小输者树设计实现外排序,外部排序中的生成最初归并串以及 K 路归并都应用最小输者树结构实现;
3. 验证你所实现的外排序的正确性。
1 )随机创建一个较长的文件作为外排序的初始数据,设置最小输者树中选手的个数,验证生成最初归并串的正确性。获得最初归并串的个数及最初归并串文件,每一最初归并串使用一个文件。
(2)使用以上生成的归并串,设置归并路数,验证 K 路归并的正确性。获得 K 路归并中各趟的结果,每一趟的结果使用一个文件。
*4. 获得外排序的访问磁盘次数,并分析其影响因素。

代码实现:

最小输者树:

losetree.h:

#ifndef _LOSETREE_H
#define _LOSETREE_H

#include<bits/stdc++.h>
using namespace std;

const int MAX_INT = 2147483647;        //设置int的最大值
const int MIN_INT = -2147483648;       //设置int的最小值

struct Node           //设置Node节点,用来进行初始归并段的生成
{
	int id;           //优先级
	int number;
	bool operator<(const Node& a)const     
	{
		if (id != a.id)        //如果优先级不同那么就先比较优先级,如果优先级相同,则比较数值
			return id < a.id;
		else
			return number < a.number;
	}
};

template<class T>
class losetree
{
public:
	losetree(T* a,int num);
	T winner();
	T player1();
	void reinit(T element);
private:
	int number;
	T* loser;      //输者树
	int* winer;    //记录每次的赢者下标
	T* player;     //赢者树
};
#endif 

losetree.cpp:

#include"losetree.h"

template<class T>
losetree<T>::losetree(T* a,int num)      //复杂度为O(n)
{
	number = num;
	player = new T[2 * num]();
	winer = new int[num * 2]();
	loser = new T[num]();
	for (int i = number; i < 2 * number; i++)
	{
		player[i] = a[i - number];
		winer[i] = i;
	}
	for (int i = number - 1; i > 0; i--) 
	{
		if (player[2 * i] < player[2 * i + 1])
		{
			player[i] = player[2 * i];
			loser[i] = player[2 * i + 1];
			winer[i] = winer[2 * i];
		}
		else
		{
			player[i] = player[2 * i + 1];
			loser[i] = player[2 * i];
			winer[i] = winer[2 * i + 1];
		}
	}
	loser[0] = player[winer[1]];         //记录最小值
}

template<class T>
T losetree<T>::winner()
{
	return loser[0];         //loser[0]中存储的是最小值
}
template<class T>
T losetree<T>::player1()
{
	return winer[1];         //最小值的下标
}

template<class T>
void losetree<T>::reinit(T element)        //复杂度为O(logn)
{
	player[winer[1]] = element;
	for (int i = winer[1] / 2; i > 0; i = i / 2)        //重构时需要将最小值的元素与其父节点相比较,直到根节点为止
	{
		if (player[2 * i] < player[2 * i + 1])
		{
			player[i] = player[2 * i];
			loser[i] = player[2 * i + 1];
			winer[i] = winer[2 * i];
		}
		else
		{
			player[i] = player[2 * i + 1];
			loser[i] = player[2 * i];
			winer[i] = winer[2 * i + 1];
		}
	}
	loser[0] = player[winer[1]];         //记录最小值
}

外排序:

Merge.h:

#ifndef _MERGE_H
#define _MERGE_H
#include"losetree.cpp"

template<class T>
class Merge
{
public:
	Merge(int _Size, int _NumberOfCombine);
	void outputname(string s1);         //设置归并段的名称  
	void devide(string name);           //初始归并段的生成
	void combine();                     //归并段的合并
	int NumberOfTimes();                //磁盘的读取次数
private:
	int Size;        //输者树的大小
	int NumberOfCombine;        //记录归并路数
	int NumberOfFile;           //记录每次产生的归并段个数
	string s, s1;               //产生归并段的名称
	string answer;              //最终输出的文件的名称
	int times;       //记录磁盘的读取次数
};
#endif 

Merge.cpp:

#include"Merge.h"

template<class T>
Merge<T>::Merge(int _Size, int _NumberOfCombine)
{
	Size = _Size;
	NumberOfCombine = _NumberOfCombine;
	NumberOfFile = 0;
	s1 = ".txt";
	answer = "output.txt";
	times = 0;
}

template<class T>
void Merge<T>::outputname(string s)          //设置归并段的名称  
{
	this->s = s;
}

template<class T>
void Merge<T>::devide(string name)           //初始归并段的生成
{
	ifstream victory(name, ios::in);         //打开名为name的文件
	int number;
	victory >> number;                       //从文件中读取数据的个数

	times++;

	Node* well = new Node[Size];             //建立一个大小为输者树大小的数组
	for (int i = 0; i < Size; i++)
	{
		victory >> well[i].number;
		well[i].id = 1;                      //初始优先级均为1
	}

	losetree<Node> defeat(well, Size);
	int num = 0;
	while (1)
	{
		victory >> num;
		if (victory.eof())                   //判断文件末位,文件到末尾则退出循环
			break;

		Node p1 = defeat.winner();

		Node p;
		p.number = num;
		if (num > p1.number)                  //如果num比最小输者树的最小值大,则优先级相同,反之则优先级+1
		{
			p.id = p1.id;
		}
		else
		{
			p.id = p1.id + 1;
			NumberOfFile = max(NumberOfFile, p.id);              //得到产生的初始归并段的个数
		}

		defeat.reinit(p);                     //重构
		string s3 = s + "0-" + to_string(p1.id) + s1;        
		ofstream fff(s3, ios::app);          //ios::app在文件末位接着输出,ios::out重新在文件中输出
		fff << p1.number << ' ';
		fff.close();

		times++;        //由于打开了s3文件因此,寻盘次数加一
	}
	while (1)           //将输者树中剩余的数输出
	{
		if (defeat.winner().number == MAX_INT)
			break;

		Node p1 = defeat.winner();

		Node p;         //p的优先级得是最低,并且值是最大
		p.id = MAX_INT;
		p.number = MAX_INT;

		defeat.reinit(p);
		string s3 = s + "0-" + to_string(p1.id) + s1;
		ofstream fff(s3, ios::app);
		fff << p1.number << ' ';
		fff.close();

		times++;
	}
}

template<class T>
void Merge<T>::combine()                  //归并段的合并
{
	for (int h = 0; NumberOfFile != 1; h++)
	{
		int* he = new int[NumberOfCombine];
		ifstream* infile = new ifstream[NumberOfFile + 1];             //将所有的归并段都放入缓冲区
		for (int i = 1; i <= NumberOfFile; i++)
		{
			infile[i].open(s + to_string(h) + "-" + to_string(i) + s1, ios::in);
			times++;
		}


		int j = 0;
		for (; j < ceil((double)NumberOfFile / (double)NumberOfCombine); j++)             //将所有的文件进行k路归并
		{
			string out;
			if (NumberOfFile <= NumberOfCombine)                  //判断产生的文件是否是最终的归并结果,对输出的文件名进行定义
			{
				out = answer;
			}
			else
			{
				out = s + to_string(h + 1) + "-" + to_string(j + 1) + s1;
			}

			ofstream outfile(out, ios::out);

			times++;
			for (int i = 1; i <= NumberOfCombine; i++)
			{
				if (j * NumberOfCombine + i >= NumberOfFile + 1)           //判断剩余的文件个数是否小于归并路数,如果小于则要将这个数组中的差值用最大值进行补充
				{
					he[i - 1] = MAX_INT;
				}
				else

					infile[j * NumberOfCombine + i] >> he[i - 1];
			}

			losetree<int> L(he, NumberOfCombine);

			while (L.winner() != MAX_INT)
			{
				outfile << L.winner() << ' ';
				for (int f = 0; f < NumberOfCombine; f++)
				{
					if (L.player1() == f + NumberOfCombine && j * NumberOfCombine + 1 + f < NumberOfFile + 1)         //得到最小输者树的最小值下标是具体的那个文件,此时还要注意有可能存在剩余的文件个数小于归并路数的情况
					{
						int u = 0;
						infile[j * NumberOfCombine + 1 + f] >> u;
						if (infile[j * NumberOfCombine + 1 + f].eof())              //如果到文件末位则将最大值输入到输者树中,然后进行重排即可
							u = MAX_INT;
						L.reinit(u);
						break;
					}
				}
			}
			outfile.close();
		}

		for (int i = 1; i <= NumberOfFile; i++)
			infile[i].close();
		NumberOfFile = j;
	}
}

template<class T>                 //磁盘的读取次数
int Merge<T>::NumberOfTimes()
{
	return times;
}


//文件末位如果有空格,则需要先将数据读入,因为将数据放入缓冲区后,eof函数在将最后一个数据放入缓冲区后,并没有到达文件的末尾,还需要再读入一位最后的空格,此时会将缓冲区的数读入,也就是最后一个数据再读一遍
//文件末位没有空格,那就先判断是否到文件末位,再读入数据就可以了

主函数:

main.cpp:

#include"Merge.cpp"

bool judge(string s)              //判断文件是否可以打开
{
	ifstream Try(s, ios::in);
	if (!Try.is_open())
	{
		return false;
	}
	Try.close();
	return true;
}

int main()
{
	cout << "请输入输者树的大小:" << endl;
	int Size;
	cin >> Size;

	cout << "请输入要实现几路归并:" << endl;
	int Several;
	cin >> Several;

	Merge<int> M(Size, Several);

	cout << "请输入要生成的文件名称:" << endl;
	string s;
	cin >> s;
	M.outputname(s);

	cout << "请输入要外排序的文件名称:" << endl;
	string name;
	cin >> name;
	while (!judge(name)) {
		cout << "请重新输入要外排序的文件名称:" << endl;
		cin >> name;
	}
	M.devide(name);

	M.combine();

	cout << "磁盘访问次数为:" << endl;
	cout << M.NumberOfTimes() << endl;
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值