引言
- 题型总结中推荐例题有蓝皮书的题型较为重要,只有吉米多维奇的题型次之。
- 思维导图中,标红的是重点内容,标黄的是次重点。
- 码字不易,如果这篇文章对您有帮助的话,希望您能点赞、收藏、加关注!您的鼓励就是我前进的动力!
知识点思维导图
补充:
- 排列:从n个不同的元素中取出m个(不同)排列种数: P n m = n ( n − 1 ) … ( n − m + 1 ) = n ! ( n − m ) ! \textcolor{red}{P_n^m=n(n-1)…(n-m+1)=\frac{n!}{(n-m)!}} Pnm=n(n−1)…(n−m+1)=(n−m)!n!
- 组合:从n个不同元素取出m个元素: C n m = P n m m ! = n ! m ! ( n − m ) ! \textcolor{red}{C_n^m=\frac{P_n^m}{m!}=\frac{n!}{m!(n-m)!}} Cnm=m!Pnm=m!(n−m)!n!
- 重复排列:从n个不同元素取出m个排列: n × n × … × n = n m n×n×…×n=n^m n×n×…×n=nm
- C n m = C n n − m C_n^m=C_n^{n-m} Cnm=Cnn−m, P 0 0 = 1 P_0^0=1 P00=1。
- 概率为零的事件不一定是不可能事件。
- 概率为0或1的事件与任何事件均独立。
易错点
- 通常P(AB)≠P(A)P(B),除非A和B独立。
- 全概率公式和贝叶斯公式使用要求是事件是互不相容的。
- 独立与互斥是两个不同的概念。
题型总结
(NULL)
方法心得
- 涉及到加、减、乘法公式的题,多半只要对公式进行变形,代入和转换即可。
- 对于较复杂事件的运算,除了熟练运用定义及运算规律判断,还可采用集合论中文氏图帮助分析和理解。
- 求解几何概率的题,根据题意建立正确的几何概型往往是解题的关键。
参考资料:
[1]安徽理工大学数学系. 概率论与数理统计(第二版). 天津:天津科学技术出版社, 2018.
[2]安徽理工大学数学系. 线性代数、概率论与数理统计同步辅导习题(第二版). 天津:天津科学技术出版社, 2016.
[3]张天德. 概率论与数理统计习题精选精解. 山东:山东科学技术出版社, 2011.
[4]《概率论与数理统计》教学视频全集 宋浩老师