你程序的复杂性知道嘛?

努力是为了不平庸~
算法学习有些时候是枯燥的,这一次,让我们先人一步,趣学算法!

程序的复杂性

  • 时间的复杂度
  • 空间的复杂度
  • 爆炸级增量
  • 一个好的算法的产生过程
  • 总结

在这里插入图片描述
这是我在力扣网上找的一个题,题目中有这样的限制条件,你知道什么是时间的复杂的吗?你知道该怎样计算时间的复杂度吗?

1.时间的复杂度

好的算法的判断方法是:高效率、低存储。那么计算运行的速度,学习时间的复杂性是十分有必要的。

算法的时间复杂度就是算法运行所需的时间。由于相同配置的计算机进行一次基本运算的时间是一定的,可以用算法基本运算的执行次数来衡量算法的效率,因此我们将算法基本运算的执行次数作为时间复杂度的衡量标准。

观察算法1-1并分析算法的时间复杂度
      
      //算法1-1
      int sum = 0;//运行1次
	  int total = 0;//运行1次
  	  for (int i = 1; i <= n; i++)//运行n+1次
	  {
		sum = sum + i;//运行n次
		for (int j = 1; j <= n; j++)//运行n*(n+1)次
		{
			total = total + i * j;//运行n*n次
		}
	  }

把算法1-1中所有语句运行的次数加起来:1+1+n+1+n+n*(n+1)+n*n。这可以用一个函数T(n)来表示:

  • T(n)=2n^2+3n+3

当n足够大时,例如n=105,T(n)=2*10^10+3*105^+3。可以看出,算法的运行时间主要取决于最高项。其实时间的复杂度也与最高项息息相关,接下来让我们化简求时间的复杂度。
化简得规则为:

  • 忽略常数项 //T(n)=2n^2+3n
  • 忽略低阶项 //T(n)=2n^2
  • 忽略最高阶的系数 //T(n)=n^2

所以f(n)=n^2,时间复杂度的表示为 O(f(n)),
所以则时间复杂度的表示为 O(n^2)

这个过程叫做大O渐近法:当n趋近于无穷大时,可以把一些影响较小的值省去,留下与时间复杂度相关性最大的值。这就好比你是一家上市公司的老板,年收入几十亿,身为老板的你丢了一百块钱,你这一年的收入也基本不会有什么影响!

以上就是时间复杂度的求法,让我们来几道题练练手吧:

  • 第一题
//算法1-2
	  int i = 1;        //运行1次
	  while (i <= n)    //假设运行x次
	  {
		  i = i * 2;    //假设运行x次
	  }

对于算法1-2我们无法立即确定while以及i=i*2语句运行了多少次。这时可假设运行了x次,每次运行后 i的值为2、22、…、2x,当2x>n结束,此时x>log_2n,所以while运行的次数为log_2n+1, i=i*2运行次数为log2n,所以算法1-2的运行次数为1+2log_2n,时间的复杂度为O(f(n))=O(log_2n)。

在计算时间复杂度时,可以只考虑对算法运行时间贡献大的语句,而忽略那些运行次数少的语句。循环语句中处在循环内层的语句往往运行次数最多,它们是对运行时间贡献最大的语句。例如,在1-1中,total=total+i*j是对算法贡献最大的语句,只计算该语句的运行次数即可。

不是所有的算法都能直接计算运行次数
例如算法1-3,在数组a[n]中顺序查找x并返回其下标i。如果没有找到,则返回-1。

 //算法1-3
	int  findx(int x)
	{
	        int i = 0;
	        for(i = 0; i<n; i++)
	        if(a[i] == x)
	              return i;
	        return -1;
	}

对于该算法,很难计算到底执行了多少次,因为运算次数依赖于数组中x的位置。如果第一个元素是x,则执行一次(最好的情况);如果最后一个是x,则执行x次(最坏的情况);如果分布概率均等,则平均运行次数为(n+1)/2。
//
有些算法,如排序、查找、插入算法等,可以分为最好、最坏和平均情况分别求算法渐进复杂度。但考察一个算法时通常考查最坏的情况,而不是考察最好的情况,最坏的情况对衡量算法的好坏具有实际意义。

计算运行的速度:

开发环境是以毫秒单位来计算时间的。使用函数clock(),从进入main()函数开始计时到循环结束计时结束!!!让我们来观测把!!!

  • 时间复杂度O(1)

  • 第一次

#include<stdio.h>
#include<time.h>

int main()
{
	int begin = clock();
	int n = 0;
	for (int i = 0; i < 100000; i++)
	{
		n++;
	}
	int end = clock();
	printf("%d毫秒\n", end - begin);
	return 0;
}

在这里插入图片描述

现在的电脑硬件的运行速度已经非常快了,运行约10万次,连一毫秒都没有。

  • 第二次(1000万次)
#include<stdio.h>
#include<time.h>

int main()
{
	int begin = clock();
	int n = 0;
	for (int i = 0; i < 10000000; i++)
	{
		n++;
	}
	int end = clock();
	printf("%d毫秒\n", end - begin);
	return 0;
}

在这里插入图片描述

1000万次的时候,可以显示时间了!!!

  • 第三次(1亿次)
#include<stdio.h>
#include<time.h>

int main()
{
	int begin = clock();
	int n = 0;
	for (int i = 0; i < 100000000; i++)
	{
		n++;
	}
	int end = clock();
	printf("%d毫秒\n", end - begin);
	return 0;
}

在这里插入图片描述

从10万次到1000万次再到1亿次,时间分别从0变为9再到86毫秒,时间有明显的增长。(不同的计算机计算的时间不同,但时间增长幅度大致相同)

所以说不同程序员设计的相同的程序,运行时间上会有很大的差异,有的运行了已经十万次了,而有的在相同的时间内却一次还没有运行,所以说学习时间的复杂度是十分有必要的。就好比老板在相同的时间内挣一个亿都是小目标,而有的老板在相同的时间内挣一万都是个问题。

2.爆炸级增量

一盘棋的麦子

有个古老的传说,一位国王的女儿不幸落水,水中有很多鳄鱼,国王情急之下下令:“谁能把公主救上来,就把女儿嫁给他。”很多人纷纷退让,一个勇敢的小伙子挺身而出,冒着生命危险把公主救了上来,国王一看是个穷小子,想要反悔,说:“除了女儿,你要什么都可以。”小伙子说:“好吧,我只要一盘棋的麦子。你再第一个格子里放一粒麦子,第二个格子里放2粒麦子,在第三个格子里,放4粒麦子,在第四个格子,放8粒麦子,以此类推,每一个格子里麦子的粒数都是前一个格子里的麦子粒数的两倍。把这64个格子放满了就行,我就想要这么多。”国王听后哈哈大笑,觉得小伙子的要求很容易满足,满口答应。结果方向,把全国的麦子都拿来,也填不完这64个格子…国王无奈,只好把女儿嫁给了这个小伙子。

我们把这个故事当作数学题,试着用你那聪明的大脑求需要的麦粒数目是多少?

解:
S=1+21+22+23+…+263
S=264-1
一粒麦子的重量大约是41.9毫克,这些麦粒的总重量约等于7729000亿千克
全世界人口按77亿计算,每个人差不多可以分得100 000千克(即100吨)
我们称这样的函数为爆炸增量函数,想一想,如果算法的时间复杂度是O(2n)会怎样?随着n的增长,算法会不会”爆掉“?我们经常见到有些算法调试没问题,运行一段时间也没问题,但在关键的时候宕机(即死机)。例如在我们高考完过后,每个考生在那一天都要查自己的成绩,查成绩的网站就那一个,1000个人查成绩没问题,10000个也没问题,可一旦涉及到几十万几百万的时候网站就容易宕机,登陆不上。

常见的算法复杂度

常见的算法时间复杂度有以下几类。
(1)常数阶O(1)。

常数阶算法的运行次数是一个常数,如5、20、100。常数阶算法的时间复杂度通常用O(1)表示。

(2)多项式阶。

很多算法的时间复杂度是多项式,通常用O(n)、O(n2)、O(n3)等表示。

(3)指数阶。

指数阶算法的运行效率极差,程序员往往像躲“恶魔”一样避开这类算法。指数阶算法的时间复杂度通常用 O(2n)、O(n!)、O(nn)等表示。

(4)对数阶。

对数阶算法的运行效率较高,通常用O(logn)、O(nlogn)等表示。

指数阶增量随着x的增加而急剧增加,而对数阶增长缓慢。它们之间的关系如下:
在这里插入图片描述

O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n3)<O(nn)<O(n!)<O(nn)

注意:在设计算法时,我们要注意算法复杂度增量的问题,尽量避免爆炸级增量。

3.空间的复杂度

空间的复杂度:算法占用空间的大小。
算法复杂度的本意是指算法在运行过程中占用了多少存储空间。算法占用的存储空间包括:

  • 输入/输出数据

  • 算法本身

  • 额外需要的辅助空间

    输入/输出数据占用的空间时必需的,算法本身占用的空间可以通过精简算法来缩减,但缩减的量是很小的,可以忽略不计。算法在运行时所使用的辅助变量占用的空间(即辅助空间)才是衡量算法空间复杂度的关键因素。

所以空间复杂度又称为:临时占用存储空间的大小。(寄存器什么的不算)

我们可以类比时间复杂度,当n趋近于无限大时,常量和低阶项都可以忽略不记。在这里,输入/输出、算法本身可以忽略不记。

请分析算法1-4的空间复杂度

  void swap(int* x, int* y)      //交换x,y的值
    {
           int temp;
           temp = *x;         //temp为辅助空间
           *x = *y;
           *y = temp;
    }

算法1-4使用了辅助空间temp,空间复杂度为O(1)
空间复杂度可以表示常数类型个数的辅助变量的程序的空间复杂度
例如:10、100个辅助变量等等

请分析算法1-5(递归)空间复杂度


   
    int fac(int n){ //计算n的阶乘
          if(n == 0&&n == 1)
               return 1;
          else
               return n*fac(n-1);
    }

阶乘是典型的递归调用问题,递归包括递推和回归。递推是将原问题不断分解成子问题,直至满足结束条件,返回最近子问题的解;然后逆向逐一回归,最终到达递推开始的原问题,返回原问题的解。

请计算n=5的空间复杂度。

计算机使用一种称为“栈”的数据结构,“栈”类似于一个放盘子的容器,每次从顶端放进去一个,拿出来的时候只能从顶端拿一个,不允许从中间插入或抽取,因此,称为“先进后出”。

递归算法的空间复杂度需要计算递归使用的栈空间

           5的阶乘进栈的过程

在这里插入图片描述

        5的阶乘出栈的过程

在这里插入图片描述
则5的阶乘的辅助空间是5,空间复杂度为5
则n的阶乘的空间复杂度为n

4.一个好的算法的产生过程

题目:斐波那契数列如下:

  1,1,2,3,5,8,13,21,34,......求数列前n项和。

算法设计:

算法1-6:递归

int Fib1(int n)
{
	if (n == 1 || n == 2)
		return 1;
	else
		return Fib1(n - 1) + Fib1(n - 2);
}

当写完一个算法时,需要考虑如下3个问题。

  • 算法是否正确?
  • 算法复杂度如何?
  • 算法能否改进?

算法1-6经过公式与运行实例,得出该算法的正确性没有问题
计算算法的时间复杂度:
在这里插入图片描述

这是一份递归树,每往下递归一行,函数Fib都要分裂为两个Fib函数,每个程序的函数都要进行计算,所以时间复杂度是指数阶的。算法1-6的时间复杂度属于爆炸增量函数。

难点:计算斐波那契数递归程序的空间复杂度

在这里借用斐波那契数列这个特例,我想让大家更加深刻的理解递归程序的空间复杂度的计算。

斐波那契数列递归程序运行的树状图:
在这里插入图片描述

在这里我首先要告诉大家的是空间复杂度的计算与时间复杂度的计算结果是完全不一样的(时间复杂度是2n),我们知道计算机使用一种称为“栈”的数据结构,“栈”类似于一个放盘子的容器,每次从顶端放进去一个,拿出来的时候只能从顶端拿一个,但过程中存在栈帧销毁的过程,因为有了栈帧销毁所以有了栈的空间是可以重复利用的,接下来用图给大家演示如何计算!

在这里插入图片描述

在这里插入图片描述
栈帧销毁,栈的空间重复利用的演示:

#include<stdio.h>
#include<stdlib.h>
void Add1()
{
	int a = 0;
	printf("%p\n", &a);
}
void Add2()
{
	int b = 0;
	printf("%p\n", &b);
}
int main()
{
	Add1();
	Add2();
	return 0;
}

在这里插入图片描述

当使用函数时,计算机会为其开辟"栈空间“,然后进行栈帧销毁,下次可以重复使用这个空间,所以两次的地址是一样的。

斐波那契数列的空间复杂度为n,表示为O(n).

算法1-7

int Fib2(int n)
{
	int arr[n + 1] = { 0 };
	arr[1] = 1;
	arr[2] = 1;
	for (int i = 3; i <= n; i++)
	{
		arr[i] = arr[i - 1] + arr[i - 2];
	}
	return arr[n];
}

很明显,算法1-7的算法复杂度为O(n),因为算法1-7仍然遵从F(n)的定义,所以正确性没有问题,但时间复杂度却从算法1-6的指数阶降到了多项式阶,算法效率有了重大突破!使用了一整个数组的辅助变量,算法的空间复杂度为O(n);

算法1-7使用了一整个数组的辅助变量,其实我们仔细观察,我们只需要一个辅助变量即可,请看!

算法1-8

int Fib3(int n)
{
	if (n == 1 || n == 2)
		return 1;
	int s1 = 1;
	int s2 = 1;
	int temp = 0;
	for (int i = 3; i <= n; i++)
	{
		temp = s1;
		s1 = s2;
		s2 = temp + s2;
	}
	return s2;
}

很明显,我们只用了一个辅助变量temp即可,空间复杂度降为O(1),时间复杂度为O(n);

5.总结

  • 将程序执行的次数作为时间复杂度的衡量标准
  • 时间复杂度通常用符号O(f(n))表示
  • 衡量算法的好坏通常考查算法的最坏情况
  • 空间复杂度只计算辅助空间
  • 递归算法的空间复杂度需要计算递归使用的栈空间
  • 设计算法应避免爆炸级增量复杂度

在这里插入图片描述

  • 13
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值