算法的时间复杂度和空间复杂度

本文介绍了衡量算法效率的两个关键指标——时间复杂度和空间复杂度。时间复杂度主要衡量算法运行速度,通过大O的渐进表达法进行分析;空间复杂度则关注算法运行所需的额外空间。文章以斐波那契数列的递归实现为例,阐述了如何分析和计算复杂度,并指出在实际应用中通常更关注最坏情况的时间复杂度。
摘要由CSDN通过智能技术生成

目录

1.算法效率

1.1 衡量算法的好坏

1.2 算法的复杂度

2.时间复杂度

2.1时间复杂度的概念

2.2 大O的渐进表达法

3.空间复杂度

4.常见的复杂度对比


1.算法效率

1.1 衡量算法的好坏

怎样才能衡量一个算法的好坏呢?对于下面的斐波那契数列

long long Fib(int N)
{
    if(N < 3)
    return 1;
    return Fib(N-1) + Fib(N-2);
}

斐波那契数列递归实现的代码非常简洁,但简洁的代码算法就一定好吗?怎么衡量算法的好坏呢?

1.2 算法的复杂度

算法编写后生成的可执行程序,运行时所占的时间资源和空间(内存)资源。

所以,衡量算法的好坏,一般是从时间和空间两个维度进行衡量。即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢。

空间复杂度主要衡量一个算法运行所需要的额外空间。

在计算机发展的早期,计算机的存储容量普遍很小,所以在当时很是在乎空间复杂度。现在经历了计算机行业的高速发展,计算机的存储容量已经达到了很高的程度,所以现在不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值