1. 行(列)和相等
D = ∣ b a a ⋯ a a b a ⋯ a a a b ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ a a a ⋯ b ∣ = ( b + n a ) ( b − a ) n − 1 D= \left | \begin{matrix} b & a & a & \cdots & a\\ a & b & a & \cdots & a\\ a & a & b & \cdots & a\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & b \end{matrix} \right | = (b+na)(b-a)^{n-1} D= baa⋮aaba⋮aaab⋮a⋯⋯⋯⋱⋯aaa⋮b =(b+na)(b−a)n−1
D = ∣ x + a x x ⋯ x x + 1 x + 1 + a x + 1 ⋯ x + 1 x + 2 x + 2 x + 2 + a ⋯ x + 2 ⋮ ⋮ ⋮ ⋱ ⋮ x + n − 1 x + n − 1 x + n − 1 ⋯ x + n − 1 + a ∣ = ( n x + n ( n − 1 ) 2 + a ) a n − 1 D= \left | \begin{matrix} x+a & x & x & \cdots & x\\ x+1 & x+1+a & x+1 & \cdots & x+1 \\ x+2 & x+2 & x+2+a & \cdots & x+2 \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ x+n-1 & x+n-1 & x+n-1 & \cdots & x+n-1+a \end{matrix} \right | = ( nx+\frac{n(n-1)}{2}+a)a^{n-1} D= x+ax+1x+2⋮x+n−1