每日一题 Leetcode-1499满足不等式的最大值

文章介绍了如何使用优先队列和双端队列解决一种寻找最大值不等式的问题,其中涉及到二维平面上的点坐标和限制条件k。给定的示例展示了在不同点集和k值下如何计算满足条件的最大值。解题策略包括维护一个滑动窗口,不断更新最大值,并确保窗口内的点满足横坐标差的限制。
摘要由CSDN通过智能技术生成
1499. 满足不等式的最大值

给你一个数组 points 和一个整数 k 。数组中每个元素都表示二维平面上的点的坐标,并按照横坐标 x 的值从小到大排序。也就是说 points[i] = [xi, yi] ,并且在 1 <= i < j <= points.length 的前提下, xi < xj 总成立。

请你找出 yi + yj + |xi - xj| 的 最大值,其中 |xi - xj| <= k 且 1 <= i < j <= points.length

题目测试数据保证至少存在一对能够满足 |xi - xj| <= k 的点。

示例 1:

输入:points = [[1,3],[2,0],[5,10],[6,-10]], k = 1
输出:4
解释:前两个点满足 |xi - xj| <= 1 ,代入方程计算,则得到值 3 + 0 + |1 - 2| = 4 。第三个和第四个点也满足条件,得到值 10 + -10 + |5 - 6| = 1 。
没有其他满足条件的点,所以返回 4 和 1 中最大的那个。

示例 2:

输入:points = [[0,0],[3,0],[9,2]], k = 3
输出:3
解释:只有前两个点满足 |xi - xj| <= 3 ,代入方程后得到值 0 + 0 + |0 - 3| = 3 。

提示:

  • 2 <= points.length <= 10^5
  • points[i].length == 2
  • -10^8 <= points[i][0], points[i][1] <= 10^8
  • 0 <= k <= 2 * 10^8
  • 对于所有的1 <= i < j <= points.length ,points[i][0] < points[j][0] 都成立。也就是说,xi 是严格递增的。

解题思路 使用优先队列作为一个滑动窗口 持续更新求解目标的最大值,在一个长度位k的窗口中找到满足 yi+yj+|xi-xj|  就是变换形式的xj-xi+yi+yj 形式

官方如下

class Solution {
public:
    using pii=pair<int ,int >;  //定义一个别名 pii存储两个有序的值,像坐标(x,y)
    int findMaxValueOfEquation(vector<vector<int>>& points, int k) {
    int res=INT_MIN;        //初始化一个最小值
    priority_queue<pii,vector<pii>,greater<pii>> heap;  //创建一个优先队列  这是最小堆 其中pair为排序的关键 本体的第一项是有序的
    for(auto& point: points)        //进行遍历poines中的元素
    {
        int x=point[0],y=point[1];      
    //进行判断如果当前元素与栈顶第一项的差值大于k时就将栈顶元素推出 ,
    // 然后在进行判断 直到当前值与前一个元素差值小于k那么就满足条件
        while(!heap.empty()&&x-heap.top().second>k)
        heap.pop();
    //更新最大值
    if(!heap.empty())
    {
        res=max(res,x+y-heap.top().first);
    }
    //将当前元素入栈
    heap.emplace(make_pair(x-y,x));
    }
    return res;
    
    }
};

在加一个解法采用算双端队列来存储点的索引

class Solution {
public:
    int findMaxValueOfEquation(vector<vector<int>>& points, int k) {
        deque<int> dq;  // 创建双端队列dq来存储点的索引
        int result = INT_MIN;  // 记录最大值
        for(int i = 0; i < points.size(); i++){  // 遍历数组points
            while(!dq.empty() && points[dq.front()][0] + k < points[i][0])
                dq.pop_front();  // 如果当前点的横坐标与队首点的横坐标差超过k,则移除队首点
            if(!dq.empty()){
                int xj = points[i][0];  // 获取当前点的横坐标
                int yi = points[i][1];  // 获取当前点的纵坐标
                int xi = points[dq.front()][0];  // 获取队首点的横坐标
                int yj = points[dq.front()][1];  // 获取队首点的纵坐标
                result = max(result, yi + yj + xj - xi);  // 更新最大值
            }
            while(!dq.empty() && points[i][1] - points[i][0] >= points[dq.back()][1] - points[dq.back()][0])
                dq.pop_back();  // 移除双端队列尾部所有纵坐标较小的点
            dq.push_back(i);  // 将当前点的索引插入双端队列尾部
        }
        return result;  // 返回最大值作为结果
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值