A sequence of nn numbers is called permutation if it contains all numbers from 11 to nn exactly once. For example, the sequences [3,1,4,2][3,1,4,2], [11] and [2,1][2,1] are permutations, but [1,2,1][1,2,1], [0,1][0,1] and [1,3,4][1,3,4] are not.
For a given number nn you need to make a permutation pp such that two requirements are satisfied at the same time:
- For each element pipi, at least one of its neighbors has a value that differs from the value of pipi by one. That is, for each element pipi (1≤i≤n1≤i≤n), at least one of its neighboring elements (standing to the left or right of pipi) must be pi+1pi+1, or pi−1pi−1.
- the permutation must have no fixed points. That is, for every ii (1≤i≤n1≤i≤n), pi≠ipi≠i must be satisfied.
Let's call the permutation that satisfies these requirements funny.
For example, let n=4n=4. Then [4,3,1,24,3,1,2] is a funny permutation, since:
- to the right of p1=4p1=4 is p2=p1−1=4−1=3p2=p1−1=4−1=3;
- to the left of p2=3p2=3 is p1=p2+1=3+1=4p1=p2+1=3+1=4;
- to the right of p3=1p3=1 is p4=p3+1=1+1=2p4=p3+1=1+1=2;
- to the left of p4=2p4=2 is p3=p4−1=2−1=1p3=p4−1=2−1=1.
- for all ii is pi≠ipi≠i.
For a given positive integer nn, output any funny permutation of length nn, or output -1 if funny permutation of length nn does not exist.
Input
The first line of input data contains a single integer tt (1≤t≤1041≤t≤104) — the number of test cases.
The description of the test cases follows.
Each test case consists of f single line containing one integer nn (2≤n≤2⋅1052≤n≤2⋅105).
It is guaranteed that the sum of nn over all test cases does not exceed 2⋅1052⋅105.
Output
For each test case, print on a separate line:
- any funny permutation pp of length nn;
- or the number -1 if the permutation you are looking for does not exist.
Example
input
Copy
5
4
3
7
5
2
output
Copy
3 4 2 1 -1 6 7 4 5 3 2 1 5 4 1 2 3 2 1
Note
The first test case is explained in the problem statement.
In the second test case, it is not possible to make the required permutation: permutations [1,2,3][1,2,3], [1,3,2][1,3,2], [2,1,3][2,1,3], [3,2,1][3,2,1] have fixed points, and in [2,3,1][2,3,1] and [3,1,2][3,1,2] the first condition is met not for all positions.
#include<stdio.h>
// 1 2 3 4
// 4 3 2 1
// 1 2 3
//3 2 1
int main()
{
int n;
scanf("%d", &n);
while (n) {
int a;
scanf("%d", &a);
if (a % 2 == 0)
{
for (int i = a; i > 0; i--)
printf("%d ", i);
printf("\n");
n--;
}
else if (a == 3)
{printf("-1\n");
n--;
}
else {
for (int i = a; i > (a+1)/ 2; i--)
printf("%d ", i);
for(int i=1;i<=(a+1)/2;i++)
printf("%d ", i);
printf("\n");
n--;
//1 2 3 4 5
//5 4 1 2 3
}
}
}