2022年10月30日 开学第八周博客 莫队算法和主席树算法

莫队算法和主席树算法

我认为这两个算法解决的问题相似,都是求区间内不同数的个数,或者是求区间内第k小,第k大的数。

DQUERY - D-query - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

 P1972 [SDOI2009] HH的项链 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

主席树:(过不了P1972)

        从右向左建立主席树,如果一个值还没出现过,则直接插入,否则删除后再重新插入。之后要查询 [l, r] 时,选用 l 位置的主席树,这时树中的数据是 [l, n] 范围内的,因此查询时需要传入 r 作为挡板,仅统计小于等于 r 的个数,这样就可以实现 [l, r] 区间不同数的查询。

#include<bits/stdc++.h>

typedef long long LL;

const int MAXX = 10000010;
int n, m;
int cnt, lst[MAXX], tp[MAXX], rot[MAXX];

struct PTree {
    int l, r, sum;
}t[MAXX];

inline int read() {
    int num = 0, f = 1; char ch = getchar();
    while (!isdigit(ch)) {if (ch == '-') f = -1; ch = getchar();}
    while (isdigit(ch)) {num = num * 10 + ch - '0'; ch = getchar();}
    return num * f;
}

void Build(int &u, int x, int l, int r) {
    t[++cnt] = t[u]; 
    u = cnt; ++ t[u].sum;
    if (l == r) return ;
    int mid = (l + r) >> 1;
    if (x <= mid) Build(t[u].l, x, l, mid);
    else Build(t[u].r, x, mid + 1, r);
}

int query(int i, int j, int q, int l, int r) {
    if (r <= q) return t[j].sum - t[i].sum;
    int mid = (l + r) >> 1, temp = query(t[i].l, t[j].l, q, l, mid);
    if (mid < q) temp += query(t[i].r, t[j].r, q, mid + 1, r);
    return temp;
}

int main() {
    n = read(); int x, l, r;
    for (int i = 1; i <= n; ++ i) {
        x = read();
        lst[i] = tp[x];
        tp[x] = i;
    }
    rot[0] = 0;
    for (int i = 1; i <= n; ++ i) {
        rot[i] = rot[i - 1];
        Build(rot[i], lst[i], 0, n);
    }
    m = read();
    for (int i = 1; i <= m; ++ i) {
        l = read(), r = read();
        printf("%d\n", query(rot[l - 1], rot[r], l - 1, 0, n));
    }
    return 0;
}

莫队算法:

#include <bits/stdc++.h>
inline int read() {
    int x = 0;
    bool flag = true;
    char ch = getchar();
    while (!isdigit(ch)) {
        if (ch == '-')
            flag = false;
        ch = getchar();
    }
    while (isdigit(ch)) {
        x = (x << 1) + (x << 3) + ch - '0';
        ch = getchar();
    }
    if(flag)
        return x;
    return ~(x - 1);
}
inline int lowbit(int x) {
    return x & (-x);
}

const int maxn = (int)1e6 + 5;
const int maxq = (int)1e6 + 5;
const int maxv = (int)1e6 + 5;

int a[maxn], lst[maxv], c[maxn];

int n;
inline void add(int x, int v) {
    for (; x <= n; x += lowbit(x))
        c[x] += v;
    return ;
}

inline int get(int x) {
    int sum = 0;
    for (; x; x -= lowbit(x))
        sum += c[x];
    return sum;
}

typedef std :: pair <int, int> pii;
std :: vector <pii> qst[maxn];
int ans[maxq];

int main() {
    n = read();
    for (int i = 1; i <= n; ++i)
        a[i] = read();
    
    std :: fill(lst + 1, lst + maxv - 3, n + 1);
    
    int q = read();

    for (int i = 1; i <= q; ++i) {
        int l = read(), r = read();
        qst[r].emplace_back(l, i);
    }

    for (int r = 1; r <= n; ++r) {
        int x = a[r];
        add(lst[x], -1);
        add(r, 1);
        lst[x] = r;
        
        for (pii q : qst[r]) {
            int l = q.first, id = q.second;
            ans[id] = get(r) - get(l - 1);
        }
    }

    for (int i = 1; i <= q; ++i)
        printf("%d\n", ans[i]);
    
    return 0;
}

树状数组:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 1000119
int num[maxn],tree[maxn],booll[maxn],nnn[maxn],N,ww;;
struct tt
{
    int l,r;
    int pos;
};
tt ask[maxn];
bool cmp(tt x,tt y)
{ 
    return x.r<y.r;
}
int lowbit(int n) 
{
    return n&(-n);
}
void add(int n,int now)
{
    while(n<=N)
    {
        tree[n]+=now;
        n+=lowbit(n);
    }
}
int sum(int n)
{
    int ans=0;
    while(n!=0)
    {
        ans+=tree[n];
        n-=lowbit(n);
    }
    return ans;
}
int main()
{
        scanf("%d",&N);
        for(int i=1;i<=N;i++)
            scanf("%d",&num[i]);
        scanf("%d",&ww);
        for(int i=1;i<=ww;i++)
        {
            scanf("%d%d",&ask[i].l,&ask[i].r);
            ask[i].pos=i; 
        }
        sort(ask+1,ask+1+ww,cmp);
        int next=1;
        for(int i=1;i<=ww;i++)
        {
            for(int j=next;j<=ask[i].r;j++)
            {
                if(booll[num[j]]) 
                    add(booll[num[j]],-1);
                add(j,1);
                booll[num[j]]=j;
            }
            next=ask[i].r+1;
            nnn[ask[i].pos]=sum(ask[i].r)-sum(ask[i].l-1);
        }
    for(int i=1;i<=ww;i++)
      cout<<nnn[i]<<endl;
    return  0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值