A 人口最多的年份
思路:运用差分思想,将出身年人数加1,死亡年人数减一,因为不包括死亡年人数所以要在死亡年人数减一,然后运用前缀和求最多人数的那一年
class Solution {
public:
int maximumPopulation(vector<vector<int>>& logs) {
int a[5000],s[5000];
memset(a,0,sizeof a);
memset(s,0,sizeof s);
sort(logs.begin(),logs.end());
int num=0,ans=0,op=logs[0][1]-1;
for(int i=0;i<logs.size();i++){
a[logs[i][0]]++;
a[logs[i][1]]--;
}
for(int i=1950;i<=2050;i++)s[i]=a[i]+s[i-1];
for(int i=1950;i<=2050;i++){
if(num<s[i]){
num=s[i];
ans=i;
}
}
return ans;
}
};
B 下标对中的最大距离
思路:由于是数组是非递增数组,因此可以想到用二分来找到对于数组nums1里面再nums2对应值的下标( Q_Q 刚开始二分写反了)
class Solution {
public:
int maxDistance(vector<int>& nums1, vector<int>& nums2) {
int a[100010];
int num=0;
for(int i=0;i<nums1.size();i++){
int l=i,r=nums2.size()-1;
while(r>l){
int mid=(l+r+1)>>1;
if(nums1[i]>nums2[mid])r=mid-1;
else l=mid;
}
//cout<<i<<" "<<l<<" "<<r<<endl;
num=max(num,r-i);
}
cout<<endl;
return num;
}
};
C 子数组最小乘积的最大值
思想:单调栈+前缀和
维护以当前值为最小值的区间,从当前位置找到左边第一个小于当前值的下标存下来,从当前位置在找到右边第一个小于当前值的下标存下来,在用前缀和求出后面可以找到的区间值,然后循环找对应区间的最大值
const int mod=1e9+7;
class Solution {
public:
int maxSumMinProduct(vector<int>& nums) {
int n=nums.size();
nums.insert(nums.begin(),0);
vector<int>l(n+10,0),r(n+10,n+1);
vector<pair<int,int>>st;//单独栈
//正序
for(int i=1;i<=n;i++){
//维护一个左边第一个比他小的
while(st.size()&&st.back().first>=nums[i])st.pop_back();
if(!st.size()){
l[i]=0;
}
else l[i]=st.back().second;
st.push_back({nums[i],i});
}
st.clear();
//逆序
for(int i=n;i>=1;i--){
while(st.size()&&st.back().first>=nums[i])st.pop_back();
if(!st.size()){
r[i]=n+1;
}
else r[i]=st.back().second;
st.push_back({nums[i],i});
}
long long res=0;
vector<long long>s(n+10,0);
for(int i=1;i<=n;i++)s[i]=s[i-1]+nums[i];
for(int i=1;i<=n;i++){
int left=l[i]+1,right=r[i]-1;
long long t=1ll*nums[i]*(s[right]-s[left-1]);
res=max(res,t);
}
return res%mod;
}
};
D 有向图中最大颜色值
思路:拓扑图
记录每个点入度的个数,将入度为0的点存入数组中,然后宽搜一下,将其26个字母颜色和前面的进行跟新,自己这一程会在下一层跟新,在判断是否有环时,每个点如果都是其他点转换过来必定在宽搜时进行消去,最终度数为0,然后求一个最大的值
class Solution {
public:
int largestPathValue(string colors, vector<vector<int>>& edges) {
unordered_map<int,vector<int>> g;
int n=colors.size();
vector<int> d(n+10,0);
for(auto e:edges)
{
int a=e[0],b=e[1];
g[a].push_back(b);
d[b]++;
}
queue<int> q;
for(int i=0;i<n;i++) if(d[i]==0) q.push(i);
vector<vector<int>> f(n+10,vector<int>(30,0));
while(q.size())
{
auto t=q.front();
q.pop();
f[t][colors[t]-'a']++;
for(auto x:g[t])
{
for(int i=0;i<26;i++) f[x][i]=max(f[x][i],f[t][i]);
if(--d[x]==0)
{
q.push(x);
}
}
}
for(int i=0;i<n;i++) if(d[i]) return -1;
int res=0;
for(int i=0;i<n;i++) for(int j=0;j<26;j++) res=max(res,f[i][j]);
return res;
}
};