1.铺垫概念
⭐有向无环图(DAG图)
有向无环图是一种特殊的图数据结构。在这样的图中,节点之间通过有向边连接,表示从一个节点到另一个节点的单向关系,并且不存在任何形式的环路,即没有路径可以让你从一个节点出发,沿着一系列有向边最终又回到该节点。
- 有向性:图中的每条边都有方向,可以用箭头表示,指示从起点到终点的单向关系。
- 无环性:是说在图中找不到一个起点到终点的路径,其中起点和终点为同一个点,或者通过一系列边能够形成一个环状结构。这意味着从任意节点出发,沿着边走,你永远不会回到起点或之前访问过的节点。
- 入度:指有多少条有向边指向该节点。
- 出度:指从该节点出发的有向边的数。
⭐AOV网 - 顶点活动图
AOV网就是在有向无环图中每一个顶点代表一个活动,而有向边则表示活动之间的优先关系的图结构。
⭐拓扑排序
拓扑排序是对一个有向无环图的顶点进行排序的一种方法,找到做事情的先后顺序,拓扑排序的结果可能不唯一。
进行拓扑排序的步骤通常如下:
- 选择起点:选择一个入度为0的顶点并输出。
- 删除起点及关联边:从图中删除该顶点及其所有出度边。
- 重复上述两步,直到当前图中没有节点为止(无环)或者没有入度为0的点为止(有环)。如果在这个过程中能访问到所有节点,说明原图是一个有向无环图,且存在至少一种拓扑排序;反之,如果还有节点未被访问到,则说明原图中存在环,无法进行拓扑排序。
应用:判断图中是否有环。
⭐拓扑排序的实现
借助队列,进行一次bfs即可
1.初始化:把所有入度为0的点加入到队列
2.当队列不为空的时候
- 拿出队头元素,加入到最终结果中
- 删除与该元素相连的边
- 判断与删除边相连的点的入度是否为0,如果入队为0,加入到队列中
2.课程表
这个题目给的实例比较简单,我们重新来给一个案例来快速了解这个题目。
所以解决我们就要先构建图代码中展示,随后进行拓扑排序即可,直接来看拓扑排序的思路:
直接上代码:
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
// 1.把所有的节点存储到一个图结构中
unordered_map<int, vector<int>> edges;// 邻接表存图
vector<int> in(numCourses); // 统计每一个节点的入度
// 2.建图
for(auto& e : prerequisites)
{
int a = e[0];
int b = e[1];
// b -> a 的一条边
edges[b].push_back(a);
in[a]++;
}
// 3.拓扑排序
// (1)把所有入度位0的节点加入到队列中
queue<int> q;
for(int i = 0; i < in.size(); i++)
if(in[i] == 0) // 入度为0
q.push(i); // i是节点
// bfs
while(q.size())
{
int t = q.front();
q.pop();
// (2)删除与该元素相连的边
for(auto e : edges[t])
{
in[e]--; // 入度--
// (3)如果入度为0,加入到队列中
if(in[e] == 0)
q.push(e);
}
}
// 判断是否有环
for(int i = 0; i < in.size(); i++)
if(in[i] != 0)
return false;
return true;
}
};
3.课程表II
这个题目和上一个题目基本上差不多,唯一就多了一个要求就是求解拓扑排序的序列,我们在bfs中利用一个vector存一下每次取出的队头元素即可,直接上代码:
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> edges(numCourses); //邻接表存图
vector<int> in(numCourses); // 统计入度
// 1.建图
for(auto& e : prerequisites)
{
int a = e[0];
int b = e[1];
// 关系:b -> a
edges[b].push_back(a);
// 统计入度
in[a]++;
}
// 2.拓扑排序
queue<int> q;
for(int i = 0; i < numCourses; i++)
if(in[i] == 0)
q.push(i);
// 3.bfs
vector<int> ret; //存储拓扑排序结果
while(q.size())
{
int t = q.front();
q.pop();
ret.push_back(t);
for(auto e : edges[t])
{
// 删除所有与该元素相连的边
in[e]--;
if(in[e] == 0)
q.push(e);
}
}
// 4.判断是否有环
if(ret.size() == numCourses)
return ret;
return {};
}
};
4.火星词典
将题意搞清楚之后,这道题就变成了判断有向图时候有环,可以⽤拓扑排序解决,直接上思路:
直接上代码:
class Solution {
unordered_map<char, unordered_set<char>> edges; // 邻接表建图
unordered_map<char, int> in; // 统计入度
bool check; // 处理边界情况
public:
string alienOrder(vector<string>& words) {
// 1.建图 + 初始化入度哈希表
for(auto& s : words)
{
for(auto ch : s)
{
in[ch] = 0;
}
}
for(int i = 0; i < words.size(); i++)
{
for(int j = i + 1; j < words.size(); j++)
{
// 添加到add数组
add(words[i], words[j]);
// 边界情况
if(check) return "";
}
}
// 2.拓扑排序
queue<char> q;
for(auto [a, b] : in)
if(b == 0)
q.push(a);
// 3.bfs
string ret; // 统计结果
while(q.size())
{
char t = q.front();
q.pop();
ret += t;
for(auto e : edges[t])
{
in[e]--;
if(in[e] == 0)
q.push(e);
}
}
// 判断是否有环
for(auto& [a, b] : in)
if(b != 0) return "";
return ret;
}
void add(string& s1, string& s2)
{
int n = min(s1.size(), s2.size());
int i = 0;
for( ; i < n; i++)
{
if(s1[i] != s2[i])
{
char a = s1[i], b = s2[i]; // a -> b
if(!edges.count(a) || !edges[a].count(b))
{
edges[a].insert(b);
in[b]++;
}
break;
}
}
if(i == s2.size() && i < s1.size()) check = true;
}
};